Publications by authors named "Tiago A Matias"

Synthetic antioxidants are often introduced to biodiesel to increase its oxidative stability, and -butyl hydroquinone (TBHQ) has been selected due to its high efficiency for this purpose. The monitoring of antioxidants in biodiesel therefore provides information on the oxidative stability of biodiesels. Herein, a laser-induced graphene (LIG) electrode is introduced as a new sensor for detecting -butyl hydroquinone (TBHQ) in biodiesel samples.

View Article and Find Full Text PDF

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed a major challenge to global health. The development of fast, accurate, and accessible diagnostic methods is essential in controlling the disease and mitigating its impacts. In this context, electrochemical biosensors present themselves as promising tools for the efficient monitoring of SARS-CoV-2 infection.

View Article and Find Full Text PDF

The advent of new psychoactive substances (NPS) has caused enormous difficulty for legal control since they are rapidly commercialized, and their chemical structures are routinely altered. In this aspect, derivatives phenethylamines, such as 25E-NBOH, have received great attention in the forensic scenario. Hence, we propose portable and cost-effective (U$ 5.

View Article and Find Full Text PDF

Mononuclear polypyridine ruthenium (Ru) complexes can catalyze various reactions, including water splitting, and can also serve as photosensitizers in solar cells. Despite recent progress in their synthesis, accurately modeling their physicochemical properties, particularly in solution, remains challenging. Herein, we conduct a theoretical investigation of the structural and electronic properties of a mononuclear Ru-aqua polypyridine complex in aqueous solution, considering five of its possible oxidation/protonation states species: [Ru(HO)(py)(bpy)], [Ru(OH)(py)(bpy)], [Ru(HO)(py)(bpy)], [Ru(OH)(py)(bpy)] and [Ru(O)(py)(bpy)], where py = pyridine and bpy = 2,2'-bipyridine.

View Article and Find Full Text PDF

Here, lab-made graphite and polylactic acid (Gpt-PLA) biocomposite materials were used to additively manufacture electrodes via the fused deposition modeling (FDM) technique for subsequent determination of the explosive 2,4,6-trinitrotoluene (TNT, considered a persistent organic pollutant). The surface of the 3D-printed material was characterized by SEM and Raman, which revealed high roughness and the presence of defects in the graphite structure, which enhanced the electrochemical response of TNT. The 3D-printed Gpt-PLA electrode coupled to square wave voltammetry (SWV) showed suitable performance for fastly determining the explosive residues (around 7 s).

View Article and Find Full Text PDF

A new electrochemical device fabricated by the combination of 3D printing manufacturing and laser-generated graphene sensors is presented. Cell and electrodes were 3D printed by the fused deposition modeling (FDM) technique employing acrylonitrile butadiene styrene filament (insulating material that composes the cell) and conductive filament (lab-made filament based on graphite dispersed into polylactic acid matrix) to obtain reference and auxiliary electrodes. Infrared-laser engraved graphene, also reported as laser-induced graphene (LIG), was produced by laser conversion of a polyimide substrate, which was assembled in the 3D-printed electrochemical cell that enables the analysis of low volumes (50-2000 μL).

View Article and Find Full Text PDF

Understanding the interactions and the solvent effects on the distribution of several species in equilibrium and how it can influence the H-NMR properties, spectroscopy (UV-vis absorption), and the acid-base equilibria can be especially challenging. This is the case of a bis-bidentate bridging ligand bis(2-pyridyl)-benzo-bis(imidazole), where the two pyridyl and four imidazolyl nitrogen atoms can be protonated in different ways, depending on the solvent, generating many isomeric/tautomeric species. Herein, we report a combined theoretical-experimental approach based on a sequential quantum mechanics/molecular mechanics procedure that was successfully applied to describe in detail the acid-base characterization and its effects on the electronic properties of such a molecule in solution.

View Article and Find Full Text PDF
Article Synopsis
  • A novel electrochemical sensing platform using laser-induced graphene modified with Prussian blue has been developed for detecting hydrogen peroxide with high sensitivity and selectivity.
  • The porous graphene films were created using infrared laser on flexible polyimide, and their properties were confirmed by scanning electron microscopy and Raman spectroscopy.
  • The PB-graphene composite showed significant improvements in charge transfer resistance, fast response times, and a low detection limit, outperforming other existing sensors for hydrogen peroxide detection.
View Article and Find Full Text PDF

Graphene-based materials present unique properties for electrochemical applications, and laser-induced conversion of polyimide to graphene is an emerging route to obtain a high-quality material for sensing. Herein we present compact and low-cost equipment constructed from an open-source 3D printer at which a 3.5-W visible (449 nm) laser was adapted to fabricate laser-induced graphene (LIG) electrodes from commercial polyimide, which resulted in electron transfer kinetic (k) of 5.

View Article and Find Full Text PDF

Artificial photosynthesis enables the conversion and storage of solar energy into chemical energy, producing substances with high energy content. In this sense, the oxidation of water can provide the H+ ions and electrons needed for the energy conversion and storage processes. Since 2005, it has been known that single-site coordination compounds can act as water oxidation catalysts (WOC).

View Article and Find Full Text PDF

Recent advances in -synchrotron-based X-ray techniques are making it possible to address fundamental questions related to complex proton-coupled electron transfer reactions, for instance, the electrocatalytic water splitting process. However, it is still a grand challenge to assess the ability of the different techniques to characterize the relevant intermediates, with minimal interference on the reaction mechanism. To this end, we have developed a novel methodology employing X-ray photoelectron spectroscopy (XPS) in connection with the liquid-jet approach to probe the electrochemical properties of a model electrocatalyst, [Ru(bpy)(py)(OH)], in an aqueous environment.

View Article and Find Full Text PDF

Photostability is considered a key asset for photosensitizers (PS) used in medical applications as well as for those used in energy conversion devices. In light-mediated medical treatments, which are based on PS-induced harm to diseased tissues, the photoinduced cycle of singlet oxygen generation has always been considered to correlate with PS efficiency. However, recent evidence points to the fundamental role of contact-dependent reactions, which usually cause PS photobleaching.

View Article and Find Full Text PDF

Significant differences were found in the proton-coupled redox chemistry and catalytic behavior of the binuclear [{Ru(H2O)(bpz)}2(tpy2ph)](PF6)4 complex [bpz = 2,2'-bipyrazine; tpy2ph = 1,3-bis(4'-2,2':6',2''-terpyridin-4-yl)benzene] as compared with the structurally analogous derivative with 2,2'-bipyridine (bpy) instead of bpz. The differences were assigned to the stronger π-accepting character of bpz relative to bpy as the ancillary ligand. The expectation of a positive shift for the Ru-centered redox potentials was confirmed for the lower oxidation state species, but that trend was reversed in the formation of the high-valence catalytic active species as shown by a negative shift of 0.

View Article and Find Full Text PDF
Article Synopsis
  • The presence of gold nanoparticles changes the Raman spectral profile of p-methylcarbohydrazonethioamide (MCHT) due to strong Surface-Enhanced Raman Scattering (SERS) effects.
  • Most metal ions do not show SERS response, indicating that bonding sites on the MCHT are occupied by gold nanoparticles, making them unavailable for other metal ion binding, except for Hg(II) ions.
  • The enhancement of specific vibrational modes when Hg(II) binds to the MCHT-AuNP hybrid suggests significant conformational changes, supporting its use as a highly selective and sensitive SERS substrate.
View Article and Find Full Text PDF

Ruthenium(iii) complexes are known for their high stability and inertness. To the best of our knowledge, the only well-characterized example of a labile Ru(iii) complex is [Ru(edta)(HO)] as a consequence of an intramolecular hydrogen bonding leading to the formation of a large opening in the molecule front, thus changing the mechanism from dissociative to associative. Compelling experimental evidence is presented demonstrating that the [Ru(phtpy)Cl] complex is labile, also indicating that the Ru(iii)-phtpy bond is much weaker than expected, in contrast to the strongly π-back-bonding stabilized Ru(ii)-phtpy bond.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists created two new types of copper and platinum compounds that could be useful in fighting cancer.
  • They studied these compounds using different techniques to understand their properties and how they react with living cells.
  • The tests showed that these compounds might be effective against tumor cells, making them potential new treatments like cisplatin, a common cancer drug.
View Article and Find Full Text PDF

Unlabelled: Several synthetic metallated protoporphyrins (M-PPIX) were tested for their ability to block the cell cycle of the lethal human malaria parasite Plasmodium falciparum. After encapsulating the porphyrin derivatives in micro- and nanocapsules of marine atelocollagen, their effects on cultures of red blood cells infected (RBC) with P. falciparum were verified.

View Article and Find Full Text PDF