Wild geckos are a significant source of human salmonellosis. We swabbed the cloacas of 37 non-native synanthropic geckos (Gekko gecko, n = 16; Phelsuma grandis, n = 21) from southern Florida, USA, and assayed swab DNA extracts using quantitative polymerase chain reaction of the invA gene. Salmonella enterica was detected in both species with a pooled prevalence of 13.
View Article and Find Full Text PDFAim: To investigate whether the frequently advocated climate-matching species distribution modeling approach could predict the well-characterized colonization of Florida by the Madagascar giant day gecko .
Location: Madagascar and Florida, USA.
Methods: To determine the climatic conditions associated with the native range of .
The latitudinal gradient in species richness is perhaps the most fundamental pattern of biodiversity, yet a satisfactory explanation for its existence remains elusive. A geometric "mid-domain effect" is often cited as having potential to help explain the latitudinal gradient in species richness, but the logic underpinning this hypothesis is apparently built on two incorrect assumptions: (1) that a given great circle-usually the Equator-can constitute the geometric "mid-domain" of the Earth's surface, and (2) that geophysical or bioclimatic boundaries are of geometric relevance in the context of a global-scale mid-domain effect. This article gives a brief overview of the relevant literature and history of thought on the subject, and describes in clear and simple terms why a global-scale mid-domain effect cannot arise, and thus cannot possibly represent a mechanistic basis for the latitudinal gradient in species richness.
View Article and Find Full Text PDF