Publications by authors named "Thomas D Wu"

Blockade of immune checkpoints PD-1 and TIGIT has demonstrated activity in mouse tumor models and human patients with cancer. Although these coinhibitory receptors can restrict signaling in CD8 T cells by regulating their associated co-stimulatory receptors CD28 and CD226, the functional consequences of combining PD-1 and TIGIT blockade remain poorly characterized. In mouse tumor models, we show that combination blockade elicited CD226-driven clonal expansion of tumor antigen-specific CD8 T cells.

View Article and Find Full Text PDF
Article Synopsis
  • * Wnt signaling is often altered in colorectal cancer, and ATF6 serves as a novel facilitator in this process.
  • * Targeting ATF6 could present a new therapeutic strategy for treating colorectal cancer.
View Article and Find Full Text PDF

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8 T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226.

View Article and Find Full Text PDF

Inositol requiring enzyme 1 (IRE1) mitigates endoplasmic-reticulum (ER) stress by orchestrating the unfolded-protein response (UPR). IRE1 spans the ER membrane, and signals through a cytosolic kinase-endoribonuclease module. The endoribonuclease generates the transcription factor XBP1s by intron excision between similar RNA stem-loop endomotifs, and depletes select cellular mRNAs through regulated IRE1-dependent decay (RIDD).

View Article and Find Full Text PDF

Background: Individualized neoantigen-specific immunotherapy (iNeST) requires robustly expressed clonal neoantigens for efficacy, but tumor mutational heterogeneity, loss of neoantigen expression, and variable tissue sampling present challenges. It is assumed that clonal neoantigens are preferred targets for immunotherapy, but the distributions of clonal neoantigens are not well characterized across cancer types.

Methods: We combined multiregion sequencing (MR-seq) analysis of five untreated, synchronously sampled metastatic solid tumors with re-analysis of published MR-seq data from 103 patients in order to characterize their globally clonal neoantigen content and factors that would impact neoantigen targeting.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores the role of CD8+ tissue-resident memory T cells, specifically those marked by CD103 expression, in suppressing cancer progression and their potential as predictors of immunotherapy response.
  • - Researchers analyzed data from 1,868 cancer patients undergoing treatment with atezolizumab and found evidence that CD103+ T cells are significantly upregulated in inflamed tumors, showcasing important characteristics related to their anti-cancer function.
  • - The results indicate that tracking the presence of CD103+ CD8+ T cells in tumors can help predict which patients are likely to benefit from PD-1/PD-L1 blockade treatments, implying ongoing anti-tumor immune responses are crucial for effective therapy outcomes.
View Article and Find Full Text PDF

Cancer cells exploit the unfolded protein response (UPR) to mitigate endoplasmic reticulum (ER) stress caused by cellular oncogene activation and a hostile tumor microenvironment (TME). The key UPR sensor IRE1α resides in the ER and deploys a cytoplasmic kinase-endoribonuclease module to activate the transcription factor XBP1s, which facilitates ER-mediated protein folding. Studies of triple-negative breast cancer (TNBC)-a highly aggressive malignancy with a dismal posttreatment prognosis-implicate XBP1s in promoting tumor vascularization and progression.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated T cell behavior in cancer patients, focusing on how certain T cells interact with cancer immunotherapy targeting PD1 and PDL1.
  • Using advanced single-cell sequencing, they found that specific T cell populations can expand within tumors and also in normal tissues around them, with the most successful anti-PDL1 treatment responses linked to these expanded T cell clones.
  • Their analysis revealed that these effective T cells could also be traced in the blood, indicating a potential method for identifying patients who are likely to respond well to treatment and suggesting ongoing immune activity against the cancer.
View Article and Find Full Text PDF

Natural killer (NK) cell recognition of tumor cells is mediated through activating receptors such as CD226, with suppression of effector functions often controlled by negative regulatory transcription factors such as FOXO1. Here we show that CD226 regulation of NK cell cytotoxicity is facilitated through inactivation of FOXO1. Gene-expression analysis of NK cells isolated from syngeneic tumors grown in wild-type or CD226-deficient mice revealed dysregulated expression of FOXO1-regulated genes in the absence of CD226.

View Article and Find Full Text PDF

The anti-FcRH5/CD3 T cell-dependent bispecific antibody (TDB) targets the B cell lineage marker FcRH5 expressed in multiple myeloma (MM) tumor cells. We demonstrate that TDBs trigger T cell receptor activation by inducing target clustering and exclusion of CD45 phosphatase from the synapse. The dimensions of the target molecule play a key role in the efficiency of the synapse formation.

View Article and Find Full Text PDF

Broadly neutralizing antibodies targeting the stalk region of influenza A virus (IAV) hemagglutinin (HA) are effective in blocking virus infection both in vitro and in vivo. The highly conserved epitopes recognized by these antibodies are critical for the membrane fusion function of HA and therefore less likely to be permissive for virus mutational escape. Here we report three resistant viruses of the A/Perth/16/2009 strain that were selected in the presence of a broadly neutralizing stalk-binding antibody.

View Article and Find Full Text PDF

Analysis of splice variants from short read RNA-seq data remains a challenging problem. Here we present a novel method for the genome-guided prediction and quantification of splice events from RNA-seq data, which enables the analysis of unannotated and complex splice events. Splice junctions and exons are predicted from reads mapped to a reference genome and are assembled into a genome-wide splice graph.

View Article and Find Full Text PDF

Background: Suffix arrays and their variants are used widely for representing genomes in search applications. Enhanced suffix arrays (ESAs) provide fast search speed, but require large auxiliary data structures for storing longest common prefix and child interval information. We explore techniques for compressing ESAs to accelerate genomic search and reduce memory requirements.

View Article and Find Full Text PDF

Background: Hash tables constitute a widely used data structure for indexing genomes that provides a list of genomic positions for each possible oligomer of a given size. The offset array in a hash table grows exponentially with the oligomer size and precludes the use of larger oligomers that could facilitate rapid alignment of sequences to a genome.

Results: We propose to compress the offset array using vectorized bitpacking.

View Article and Find Full Text PDF

The programs GMAP and GSNAP, for aligning RNA-Seq and DNA-Seq datasets to genomes, have evolved along with advances in biological methodology to handle longer reads, larger volumes of data, and new types of biological assays. The genomic representation has been improved to include linear genomes that can compare sequences using single-instruction multiple-data (SIMD) instructions, compressed genomic hash tables with fast access using SIMD instructions, handling of large genomes with more than four billion bp, and enhanced suffix arrays (ESAs) with novel data structures for fast access. Improvements to the algorithms have included a greedy match-and-extend algorithm using suffix arrays, segment chaining using genomic hash tables, diagonalization using segmental hash tables, and nucleotide-level dynamic programming procedures that use SIMD instructions and eliminate the need for F-loop calculations.

View Article and Find Full Text PDF

We analyzed transcriptomes (n = 211), whole exomes (n = 99) and targeted exomes (n = 103) from 216 malignant pleural mesothelioma (MPM) tumors. Using RNA-seq data, we identified four distinct molecular subtypes: sarcomatoid, epithelioid, biphasic-epithelioid (biphasic-E) and biphasic-sarcomatoid (biphasic-S). Through exome analysis, we found BAP1, NF2, TP53, SETD2, DDX3X, ULK2, RYR2, CFAP45, SETDB1 and DDX51 to be significantly mutated (q-score ≥ 0.

View Article and Find Full Text PDF

Tumor-derived cell lines have served as vital models to advance our understanding of oncogene function and therapeutic responses. Although substantial effort has been made to define the genomic constitution of cancer cell line panels, the transcriptome remains understudied. Here we describe RNA sequencing and single-nucleotide polymorphism (SNP) array analysis of 675 human cancer cell lines.

View Article and Find Full Text PDF

To further understand the molecular distinctions between kidney cancer subtypes, we analyzed exome, transcriptome and copy number alteration data from 167 primary human tumors that included renal oncocytomas and non-clear cell renal cell carcinomas (nccRCCs), consisting of papillary (pRCC), chromophobe (chRCC) and translocation (tRCC) subtypes. We identified ten significantly mutated genes in pRCC, including MET, NF2, SLC5A3, PNKD and CPQ. MET mutations occurred in 15% (10/65) of pRCC samples and included previously unreported recurrent activating mutations.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is a heterogeneous disease with high mortality rate. Recent genomic studies have identified TP53, AXIN1, and CTNNB1 as the most frequently mutated genes. Lower frequency mutations have been reported in ARID1A, ARID2 and JAK1.

View Article and Find Full Text PDF

Gastric cancer is the second leading cause of worldwide cancer mortality, yet the underlying genomic alterations remain poorly understood. Here we perform exome and transcriptome sequencing and SNP array assays to characterize 51 primary gastric tumours and 32 cell lines. Meta-analysis of exome data and previously published data sets reveals 24 significantly mutated genes in microsatellite stable (MSS) tumours and 16 in microsatellite instable (MSI) tumours.

View Article and Find Full Text PDF

The protein kinase v-akt murine thymoma viral oncogene homolog (AKT), a key regulator of cell survival and proliferation, is frequently hyperactivated in human cancers. Intramolecular pleckstrin homology (PH) domain-kinase domain (KD) interactions are important in maintaining AKT in an inactive state. AKT activation proceeds after a conformational change that dislodges the PH from the KD.

View Article and Find Full Text PDF

Lung cancer is a highly heterogeneous disease in terms of both underlying genetic lesions and response to therapeutic treatments. We performed deep whole-genome sequencing and transcriptome sequencing on 19 lung cancer cell lines and three lung tumor/normal pairs. Overall, our data show that cell line models exhibit similar mutation spectra to human tumor samples.

View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is an exceptionally aggressive disease with poor prognosis. Here, we obtained exome, transcriptome and copy-number alteration data from approximately 53 samples consisting of 36 primary human SCLC and normal tissue pairs and 17 matched SCLC and lymphoblastoid cell lines. We also obtained data for 4 primary tumors and 23 SCLC cell lines.

View Article and Find Full Text PDF

Identifying and understanding changes in cancer genomes is essential for the development of targeted therapeutics. Here we analyse systematically more than 70 pairs of primary human colon tumours by applying next-generation sequencing to characterize their exomes, transcriptomes and copy-number alterations. We have identified 36,303 protein-altering somatic changes that include several new recurrent mutations in the Wnt pathway gene TCF7L2, chromatin-remodelling genes such as TET2 and TET3 and receptor tyrosine kinases including ERBB3.

View Article and Find Full Text PDF