Poly (ethylene terephthalate) (PET) is one of the most ubiquitous plastics and can be depolymerized through biological and chemo-catalytic routes to its constituent monomers, terephthalic acid (TPA) and ethylene glycol (EG). TPA and EG can be re-synthesized into PET for closed-loop recycling or microbially converted into higher-value products for open-loop recycling. Here, we expand on our previous efforts engineering and applying Pseudomonas putida KT2440 for PET conversion by employing adaptive laboratory evolution (ALE) to improve TPA catabolism.
View Article and Find Full Text PDFPoly(ethylene terephthalate) (PET) is the most abundantly consumed synthetic polyester and accordingly a major source of plastic waste. The development of chemocatalytic approaches for PET depolymerization to monomers offers new options for open-loop upcycling of PET, which can leverage biological transformations to higher-value products. To that end, here we perform four sequential metabolic engineering efforts in Pseudomonas putida KT2440 to enable the conversion of PET glycolysis products via: (i) ethylene glycol utilization by constitutive expression of native genes, (ii) terephthalate (TPA) catabolism by expression of tphA2A3BA1 from Comamonas and tpaK from Rhodococcus jostii, (iii) bis(2-hydroxyethyl) terephthalate (BHET) hydrolysis to TPA by expression of PETase and MHETase from Ideonella sakaiensis, and (iv) BHET conversion to a performance-advantaged bioproduct, β-ketoadipic acid (βKA) by deletion of pcaIJ.
View Article and Find Full Text PDFMicrobiol Mol Biol Rev
November 2019
The biological production of methane is vital to the global carbon cycle and accounts for ca. 74% of total methane emissions. The organisms that facilitate this process, methanogenic archaea, belong to a large and phylogenetically diverse group that thrives in a wide range of anaerobic environments.
View Article and Find Full Text PDFThe methanogenic archaeon encodes three distinct types of hydrogenase, whose functions vary depending on the growth substrate. These include the F-dependent (Frh), methanophenazine-dependent (Vht), and ferredoxin-dependent (Ech) hydrogenases. To investigate their physiological roles, we characterized a series of mutants lacking each hydrogenase in various combinations.
View Article and Find Full Text PDFEnergy conservation via hydrogen cycling, which generates proton motive force by intracellular H production coupled to extracellular consumption, has been controversial since it was first proposed in 1981. It was hypothesized that the methanogenic archaeon is capable of energy conservation via H cycling, based on genetic data that suggest that H is a preferred, but nonessential, intermediate in the electron transport chain of this organism. Here, we characterize a series of hydrogenase mutants to provide direct evidence of H cycling.
View Article and Find Full Text PDF