Publications by authors named "Thijs Vackier"

Virulence factors of pathogens, such as toxin production and biofilm formation, often exhibit a public character, providing benefits to nearby non-producers. Consequently, anti-virulence drugs targeting these public traits may not select for resistance, as resistant mutants that resume production of the virulence factor share the benefits of their resistance with surrounding sensitive cells. In agreement with this, we show that even after long-term treatment with a 2-amino-imidazole (2-AI) biofilm inhibitor, Salmonella populations remained as susceptible to biofilm inhibition as the ancestral populations.

View Article and Find Full Text PDF

To evaluate the effect of amination on biofilm inhibition against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, representative compounds of two previously described 5-aryl-2-aminoimidazole (5-Ar-2-AI) classes were aminated by installing an amino group at the end of the substituted n-alkyl chain. Amination led to an improvement in activity for one of the two classes, the 2N-substituted 5-Ar-2-AI class. Based on these findings, a more extensive library of 2N-substituted-aminated 5-Ar-2-AIs was synthesized having different n-alkyl and halogen substitutions on the 2N-position and the 4(5)-phenyl ring, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that the antimicrobial activity of GA is enhanced as the pH decreases, with fully protonated GA (at pH = 3) being effective against certain bacteria, while other strains are inhibited at higher pH levels.
  • * Results show that the increased antimicrobial activity of GA hydrogels is due to GA's release into the suspension, interacting directly with bacteria, and the variations in activity are linked to the protonation state of GA rather than just
View Article and Find Full Text PDF

Orthopedic-device-related infections (ODRIs) are challenging clinical complications that are often exacerbated by antibiotic resistance and biofilm formation. This review explores the efficacy of naturally occurring antimicrobials - including agents sourced from bacteria, fungi, viruses, animals, plants and minerals - against pathogens common in ODRIs. The limitations of traditional antibiotic agents are presented, and innovative naturally occurring antimicrobials, such as bacteriophage therapy and antimicrobial peptides, are evaluated with respect to their interaction with conventional antibiotics and antibiofilm efficacy.

View Article and Find Full Text PDF

Background/objectives: The rise and spread of antimicrobial resistance complicates the treatment of bacterial wound pathogens, further increasing the need for newer, effective therapies. Azoles such as miconazole have shown promise as antibacterial compounds; however, they are currently only used as antifungals. Previous research has shown that combining azoles with quaternary ammonium compounds yields synergistic activity against fungal pathogens, but the effect on bacterial pathogens has not been studied yet.

View Article and Find Full Text PDF

Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding.

View Article and Find Full Text PDF

Background: Tannins have demonstrated antibacterial and antibiofilm activity, but there are still unknown aspects on how the chemical properties of tannins affect their biological properties. We are interested in understanding how to modulate the antibiofilm activity of tannins and in delineating the relationship between chemical determinants and antibiofilm activity.

Materials And Methods: The effect of five different naturally acquired tannins and their chemical derivatives on biofilm formation and planktonic growth of Typhimurium, , and was determined in the Calgary biofilm device.

View Article and Find Full Text PDF

Background: Water quality in the drinking water system (DWS) plays an important role in the general health and performance of broiler chickens. Conditions in the DWS of broilers are ideal for microbial biofilm formation. Since pathogens might reside within these biofilms, they serve as potential source of waterborne transmission of pathogens to livestock and humans.

View Article and Find Full Text PDF

After cleaning and disinfection (C&D), surface contamination can still be present in the production environment of food companies. Microbiological contamination on cleaned surfaces can be transferred to the manufactured food and consequently lead to foodborne illness and early food spoilage. However, knowledge about the microbiological composition of residual contamination after C&D and the effect of this contamination on food spoilage is lacking in various food sectors.

View Article and Find Full Text PDF

Biofilms are an important source of contamination in food companies, yet the composition of biofilms in practice is still mostly unknown. The chemical and microbiological characterization of surface samples taken after cleaning and disinfection is very important to distinguish free-living bacteria from the attached bacteria in biofilms. In this study, sampling methods that are potentially useful for both chemical and microbiological analyses of surface samples were evaluated.

View Article and Find Full Text PDF