Publications by authors named "Thijs R A Vandenbroucke"

The Late Ordovician mass extinction event is the oldest of the five great extinction events in the fossil record. It has long been regarded as an outlier among mass extinctions, primarily due to its association with a cooling climate. However, recent temporally better resolved fossil biodiversity estimates complicate this view, providing growing evidence for a prolonged but punctuated biodiversity decline modulated by changes in atmospheric composition, ocean chemistry, and viable habitat area.

View Article and Find Full Text PDF

Marine ecosystems with a diverse range of animal groups became established during the early Cambrian (~541 to ~509 Ma). However, Earth's environmental parameters and palaeogeography in this interval of major macro-evolutionary change remain poorly constrained. Here, we test contrasting hypotheses of continental configuration and climate that have profound implications for interpreting Cambrian environmental proxies.

View Article and Find Full Text PDF

Ordovician limestone-marl alternations in the Oslo-Asker District have been interpreted as signaling glacio-eustatic lowstands, which would support a prolonged "Early Palaeozoic Icehouse". However, these rhythmites could alternatively reflect differential diagenesis, without sedimentary trigger. Here, we test both hypotheses through one Darriwilian and three Katian sections.

View Article and Find Full Text PDF

Glacial episodes have been linked to Ordovician-Silurian extinction events, but cooling itself may not be solely responsible for these extinctions. Teratological (malformed) assemblages of fossil plankton that correlate precisely with the extinction events can help identify alternate drivers of extinction. Here we show that metal poisoning may have caused these aberrant morphologies during a late Silurian (Pridoli) event.

View Article and Find Full Text PDF

The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy.

View Article and Find Full Text PDF

Background: We examine the environmental, climatic and geographical controls on tropical ostracod distribution in the marine Ordovician of North America.

Methodology/principal Findings: Analysis of the inter-regional distribution patterns of Ordovician Laurentian ostracods, focussing particularly on the diverse Late Ordovician Sandbian (ca 461 to 456 Ma) faunas, demonstrates strong endemicity at the species-level. Local endemism is very pronounced, ranging from 25% (e.

View Article and Find Full Text PDF

Our new data address the paradox of Late Ordovician glaciation under supposedly high pCO(2) (8 to 22x PAL: preindustrial atmospheric level). The paleobiogeographical distribution of chitinozoan ("mixed layer") marine zooplankton biotopes for the Hirnantian glacial maximum (440 Ma) are reconstructed and compared to those from the Sandbian (460 Ma): They demonstrate a steeper latitudinal temperature gradient and an equatorwards shift of the Polar Front through time from 55 degrees -70 degrees S to approximately 40 degrees S. These changes are comparable to those during Pleistocene interglacial-glacial cycles.

View Article and Find Full Text PDF