Publications by authors named "Thelma Ameh"

Nanoparticles have been proposed as tunable delivery vehicles for targeted treatments and, in some cases, the active therapeutic agents themselves. Despite the promise of such customizable impacts, little evidence exists to support these claims in the realm of antibiotics. Exploration of the silver and copper nanoparticle antibacterial impacts have been reported with inconsistent results.

View Article and Find Full Text PDF

The antibacterial properties of nanoparticles are of particular interest because of their potential to serve as an alternative therapy to combat antimicrobial resistance. Metal nanoparticles such as silver and copper nanoparticles have been investigated for their antibacterial properties. Silver and copper nanoparticles were synthesized with the surface stabilizing agents cetyltrimethylammonium bromide (CTAB, to confer a positive surface charge) and polyvinyl pyrrolidone (PVP, to confer a neutral surface charge).

View Article and Find Full Text PDF

Silver and copper nanoparticles (AgNPs and CuNPs) coated with stabilizing moieties induce oxidative stress in both bacteria and mammalian cells. Effective antibacterial agents that can overcome existing mechanisms of antibacterial resistance will greatly improve biomedical interventions. In this study, we analyzed the effect of nanoparticle-induced stress.

View Article and Find Full Text PDF

Copper is an essential element for metabolism in plants and animals. In its nanoform, copper has found various applications, thus increasing potential environmental exposure. Released nanoparticles in the environment undergo various transformation processes while bioaccumulation and toxicity of copper nanoparticles have been demonstrated in plants and animals.

View Article and Find Full Text PDF