Staphylococcus epidermidis is part of the commensal microbiota of the skin and mucous membranes, though it can also act as a pathogen in certain scenarios, causing a range of infections, including periprosthetic joint infection (PJI). Transcriptomic profiling may provide insights into mechanisms by which S. epidermidis adapts while in a pathogenic compared to a commensal state.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI), a devastating complication of total joint replacement, is of incompletely understood pathogenesis and may sometimes be challenging to clinically distinguish from other causes of arthroplasty failure. We characterized human gene expression in 93 specimens derived from surfaces of resected arthroplasties, comparing transcriptomes of subjects with infection- versus non-infection-associated arthroplasty failure. Differential gene expression analysis confirmed 28 previously reported potential biomarkers of PJI, including bactericidal/permeability increasing protein (BPI), cathelicidin antimicrobial peptide (CAMP), C-C-motif chemokine ligand 3 (CCL3), 4(CCL4) and C-X-C-motif chemokine ligand 2 (CXCL2), colony stimulating factor 2 receptor beta (CSF2RB), colony stimulating factor 3 (CSF3), alpha-defensin (DEFA4), Fc fragment of IgG receptor 1B (CD64B), intercellular adhesion molecule 1 (ICAM1), interferon gamma (IFNG), interleukin 13 receptor subunit alpha 2 (IL13RA2), interleukin 17D (IL17D), interleukin 1 (IL1A, IL1B, IL1RN), interleukin 2 receptors (IL2RA, IL2RG), interleukin 5 receptor (IL5RA), interleukin 6 (IL6), interleukin 8 (IL8), lipopolysaccharide binding protein (LBP), lipocalin (LCN2), lactate dehydrogenase C (LDHC), lactotransferrin (LTF), matrix metallopeptidase 3 (MMP3), peptidase inhibitor 3 (PI3), and vascular endothelial growth factor A (VEGFA), and identified three novel molecules of potential diagnostic use for detection of PJI, namely C-C-motif chemokine ligand CCL20, coagulation factor VII (F7), and B cell receptor FCRL4.
View Article and Find Full Text PDFBackground: The aims of this study were to determine the levels of cobalt (Co) and chromium (Cr) ions generated in simulators from metal-on-polyethylene (MoP) and ceramic-on-polyethylene (CoP) constructs. Furthermore, we aimed to investigate the cytotoxic effect of these ion levels on native tissues and their potential to modify periprosthetic joint infection risk.
Methods: We used in vitro culture of human adipose-derived mesenchymal stem cells (AMSCs) and Staphylococcus epidermidis cultures, respectively.
Etiology, transmission and protection: (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2016
Regulation of the Neisseria gonorrhoeae pilE gene is ill-defined. In this study, post-transcriptional effects on expression were assessed. In silico analysis predicts the formation of three putative stable stem-loop structures with favourable free energies within the 5' untranslated region of the pilE message.
View Article and Find Full Text PDFMicrobiology (Reading)
January 2016
Initially, pilE transcription in Neisseria gonorrhoeae appeared to be complicated, yet it was eventually simplified into a model where integration host factor activates a single -35/ -10 promoter. However, with the advent of high-throughput RNA sequencing, numerous small pil-specific RNAs (sense as well as antisense) have been identified at the pilE locus as well as at various pilS loci. Using a combination of in vitro transcription, site-directed mutagenesis, Northern analysis and quantitative reverse transcriptase PCR (qRT-PCR) analysis, we have identified three additional non-canonical promoter elements within the pilE gene; two are located within the midgene region (one sense and one antisense), with the third, an antisense promoter, located immediately downstream of the pilE ORF.
View Article and Find Full Text PDFPiliation is an important virulence determinant for Neisseria gonorrhoeae. PilE polypeptide is the major protein subunit in the pilus organelle and engages in extensive antigenic variation due to recombination between pilE and a pilS locus. pilS were so-named as they are believed to be transcriptionally silent, in contrast to the pilE locus.
View Article and Find Full Text PDF