Denervation induces skeletal muscle atrophy due to the loss of control and feedback with the nervous system. Unfortunately, muscle atrophy only becomes evident days after the denervation event when it could be irreversible. Alternative diagnosis tools for early detection of denervation-induced muscle atrophy are, thus, required.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Denervation-induced muscle atrophy is a frequent cause of skeletal muscle diseases. However, the role of the most important muscle growth factor, insulin-like growth factor (IGF-1), in this process is poorly understood. IGF-1 activity is controlled by six IGF-1 binding proteins (IGFBPs).
View Article and Find Full Text PDFFront Nutr
June 2022
Nutraceuticals are products of natural origin widely used for the treatment and/or prevention of some chronic diseases that are highly prevalent in Western countries, such as obesity or type II diabetes, among others. However, its possible use in the prevention of acute diseases that can put life at risk has been poorly studied. Sepsis is an acute condition that causes cardiovascular and skeletal muscle damage due to a systemic inflammatory state.
View Article and Find Full Text PDFSepsis increases glucocorticoid and decreases IGF-1, leading to skeletal muscle wasting and cachexia. Muscle atrophy mainly takes place in locomotor muscles rather than in respiratory ones. Our study aimed to elucidate the mechanism responsible for this difference in muscle proteolysis, focusing on local inflammation and IGF-1 as well as on their glucocorticoid response and HDAC4-myogenin activation.
View Article and Find Full Text PDFInt J Mol Sci
August 2021
Inflammation induces a wide response of the neuroendocrine system, which leads to modifications in all the endocrine axes. The hypothalamic-growth hormone (GH)-insulin-like growth factor-1 (IGF-1) axis is deeply affected by inflammation, its response being characterized by GH resistance and a decrease in circulating levels of IGF-1. The endocrine and metabolic responses to inflammation allow the organism to survive.
View Article and Find Full Text PDFAntioxidants (Basel)
July 2021
Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 () to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, /) prevents peroxides formation after 12 months of storage at 30 °C.
View Article and Find Full Text PDFAging is associated with increased visceral adiposity and a decrease in the amount of brown adipose tissue and muscle mass, known as sarcopenia, which results in the development of metabolic alterations such as insulin resistance. In this study, we aimed to analyze whether 3-week supplementation with a phenolic-rich olive leaf extract (OLE) to 24 months-old male Wistar rats orally (100 mg/kg) attenuated the aging-induced alterations in body composition and insulin resistance. OLE treatment increased brown adipose tissue and attenuated the aging-induced decrease in protein content and gastrocnemius weight.
View Article and Find Full Text PDFOlive leaves are rich in bioactive substances which exert anti-inflammatory, antioxidant, insulin-sensitizing and antihypertensive effects. The aim of this study was to analyze the possible beneficial effects of an olive leaf extract (OLE) rich in secoiridoids and phenolic compounds on the aging-induced metabolic and vascular alterations. Three experimental groups of rats were used: 3-month-old rats, 24-month-old rats and 24-month-old rats supplemented 21 days with OLE (100 mg/kg).
View Article and Find Full Text PDFAging is associated with a progressive decline in skeletal muscle mass, strength and function (sarcopenia). We have investigated whether a mixture of algae oil (25%) and extra virgin olive oil (75%) could exert beneficial effects on sarcopenia. Young (3 months) and old (24 months) male Wistar rats were treated with vehicle or with the oil mixture (OM) (2.
View Article and Find Full Text PDFAging is one of the major risk factors for suffering cardiovascular and metabolic diseases. Due to the increase in life expectancy, there is a strong interest in the search for anti-aging strategies to treat and prevent these aging-induced disorders. Both omega 3 polyunsaturated fatty acids (ω-3 PUFA) and extra virgin olive oil (EVOO) exert numerous metabolic and cardiovascular benefits in the elderly.
View Article and Find Full Text PDFCalorie restriction during gestation in rats has long-lasting adverse effects in the offspring. It induces metabolic syndrome-related alterations, which are partially reversed by leptin supplementation during lactation. We employed these conditions to identify transcript-based nutrient sensitive biomarkers in peripheral blood mononuclear cells (PBMCs) predictive of later adverse metabolic health.
View Article and Find Full Text PDFThe endocrine system is an essential regulator of muscle metabolism in both health and disease. Hormones such as growth hormone (GH), insulin-like growth factor-I (IGF-I) and androgens are the main regulators of muscle metabolism in both health and disease; have profound influences on muscle, acting as anabolic factors; and are important regulators of muscle mass. On the contrary, glucocorticoids have direct catabolic effects and induce muscle protein loss.
View Article and Find Full Text PDFInflammatory diseases are associated with muscle wasting as a result of an increase in proteolysis. The purpose of this study was to elucidate whether administration of a β2 adrenergic agonist, formoterol, was able to prevent the acute effects of sepsis induced by liposaccharide (LPS) injection on rat gastrocnemius muscle and to evaluate the possible roles of corticosterone, IGF-I, miR-23a, and miR-29b. For this purpose, male Wistar rats were injected with LPS and/or formoterol.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
July 2018
Gene expression profile of peripheral blood cells (PBC) is able to reflect useful aspects of the whole body metabolic status. Therefore, and favored by the huge development of "omic" technologies, blood cells and, particularly, the peripheral blood mononuclear cell (PBMC) fraction, are emerging as a potent source of transcriptomic biomarkers of health and disease. In this review we describe and discuss the available information concerning the use of the PBC and the PBMC fraction as a crucial tool for nutrigenomic studies.
View Article and Find Full Text PDFAge-linked metabolic disturbances, such as liver steatosis and insulin resistance, show greater prevalence in men than in women. Thus, our aim was to analyze these sex-related differences in male and female Wistar rats (aged 26 days and 3, 7, and 14 months), and to assess their potential relationship with alterations in the capacity of adipose tissue expansion and the dysregulation of the main adipokines produced by the adipose tissue, leptin and adiponectin. Adiposity-related parameters, blood parameters, the expression of genes related to expandability and inflammation (WAT), lipid metabolism (liver), and leptin and insulin signaling (both tissues) were measured.
View Article and Find Full Text PDFBackground/aims: The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet.
Methods: The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet.
Results: Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice.
In this study we investigate the effects of maternal supplementation with different fat sources (margarine, olive oil, or butter) during pregnancy and lactation on offspring metabolic health in adulthood and under obesogenic conditions. In adulthood and under a high-fat (HF) diet, the margarine group showed lower body fat content than the butter group and was also protected against the increase in hepatic lipid content occurring in the other groups, whereas the butter group showed signs of more advanced hepatic steatosis. Under an HF diet, all fat-supplemented animals showed greater hepatic expression levels of fatty acid oxidation-related genes compared to their normal-fat diet counterparts, with higher levels in the margarine group.
View Article and Find Full Text PDFWe aimed to assess the effects of maternal supplementation with the main fat sources used in the human Western diet (olive oil, butter, margarine) on milk FA composition and on plasma FA profile of offspring, and to determine whether it may influence body-weight-gain (BWG) and adiposity of offspring during the suckling period. Wistar rats were supplemented with the different fat sources from day 14 of gestation and throughout lactation. Olive oil-supplemented dams showed the highest proportion of oleic-acid in milk, with no changes in plasma.
View Article and Find Full Text PDFEpidemiological studies in humans and controlled intervention studies in animals have shown that nutritional programming in early periods of life is a phenomenon that affects metabolic and physiological functions throughout life. The phenotypes of health or disease are hence the result of the interaction between genetic and environmental factors, starting right from conception. In this sense, gestation and lactation are disclosed as critical periods.
View Article and Find Full Text PDFSerum ghrelin concentration is generally reduced in obesity. We aimed to assess whether this alteration is present in rats predisposed to obesity because of moderate undernutrition during gestation, and to explore whether this could be related with alterations in stomach sympathetic innervation, which is involved in gastric ghrelin secretion. Offspring of control and 20% gestational calorie-restricted dams (CR) exposed to normal-fat-diet from weaning onward were studied.
View Article and Find Full Text PDFScope: This study investigates the lasting effects of maternal supplementation with different fat sources during pregnancy and lactation on feeding behavior and energy homeostasis of their offspring, and its relation to hypothetical effects in the development of main central structures involved in leptin signaling.
Methods And Results: Offspring of dams supplemented with olive oil, butter, or margarine during late pregnancy and lactation were fed with normal fat (NF) diet until 4-month-old, and then with NF or high fat (HF) diet until 6-month-old. Results showed that 21-day-old margarine group pups presented a higher cell number in the arcuate nucleus (ARC) (females) and higher hypothalamic ObRb/SOCS3 mRNA ratio (males).
In rats, 20% gestational energy restriction programmes offspring for higher food intake, which in adulthood results in higher body weight in males but not in females. Here, we aimed to assess whether the effects of moderate energy restriction during gestation and the sex-related outcomes on adult body weight may be related to the metabolic programming of sirtuin expression in different tissues. For this purpose, 25-d-old offspring of control and 20% energy-restricted (ER) rats (from days 1-12 of pregnancy) were studied.
View Article and Find Full Text PDFWe aimed to assess the mechanisms responsible for hyperphagia and metabolic alterations caused by maternal moderate caloric restriction during gestation. Male and female offspring of control and 20% caloric-restricted rats (CR) were studied. They were fed a normal-fat diet until 4 months of age and then moved to a high-fat diet until 6 months of age.
View Article and Find Full Text PDFBackground: IDEFICS (Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants Project) is a European multicenter study on childhood obesity. One of its goals is to define early biomarkers of risk associated with obesity and its comorbid conditions.
Objective: We considered blood cells as a new potential source of transcriptional biomarkers for these metabolic disorders and examined whether blood cell mRNA levels of some selected genes (LEPR, INSR, CPT1A, SLC27A2, UCP2, FASN, and PPARα) were altered in overweight children and whether their expression levels could be defined as markers of the insulin-resistant or dyslipidemic state associated with overweight.
Maternal prenatal undernutrition predisposes offspring to higher adiposity in adulthood. Mechanisms involved in these programming effects, apart from those described in central nervous system development, have not been established. Here we aimed to evaluate whether moderate caloric restriction during early pregnancy in rats affects white adipose tissue (WAT) sympathetic innervation in the offspring, and its relationship with adiposity development.
View Article and Find Full Text PDF