Publications by authors named "Tarek Hattab"

Animal movements are typically influenced by multiple environmental factors simultaneously, and individuals vary in their response to this environmental heterogeneity. Therefore, understanding how environmental aspects, including biotic, abiotic, and anthropogenic factors, influence the movements of wild animals is an important focus of wildlife research and conservation. We apply Exponential Random Graph Models (ERGMs) to analyze movement networks of a bull shark population in a network of acoustic receivers and identify the effects of environmental, social, or other types of covariates on their movements.

View Article and Find Full Text PDF

Ecological processes are often spatially and temporally structured, potentially leading to autocorrelation either in environmental variables or species distribution data. Because of that, spatially-biased in-situ samples or predictors might affect the outcomes of ecological models used to infer the geographic distribution of species and diversity. There is a vast heterogeneity of methods and approaches to assess and measure spatial bias; this paper aims at addressing the spatial component of data-driven biases in species distribution modelling, and to propose potential solutions to explicitly test and account for them.

View Article and Find Full Text PDF

As climate change accelerates, species are shifting poleward and subtropical and tropical species are colonizing temperate environments. A popular approach for characterizing such responses is the community temperature index (CTI), which tracks the mean thermal affinity of a community. Studies in marine, freshwater, and terrestrial ecosystems have documented increasing CTI under global warming.

View Article and Find Full Text PDF

An animal's energy landscape considers the power requirements associated with residing in or moving through habitats. Within marine environments, these landscapes can be dynamic as water currents will influence animal power requirements and can change rapidly over diel and tidal cycles. In channels and along slopes with strong currents, updraft zones may reduce energy expenditure of negatively buoyant fishes that are also obligate swimmers.

View Article and Find Full Text PDF

Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys.

View Article and Find Full Text PDF

There is mounting evidence of species redistribution as climate warms. Yet, our knowledge of the coupling between species range shifts and isotherm shifts remains limited. Here, we introduce BioShifts-a global geo-database of 30,534 range shifts.

View Article and Find Full Text PDF
Article Synopsis
  • Plant functional traits influence ecosystem functions and vary based on ecological strategies, with species-level trade-offs not directly aligning at the community level.
  • A global analysis of over 1.1 million vegetation plots reveals that while 17 functional traits are filtered, community trait values can differ significantly despite similar environmental conditions.
  • The study suggests that local factors like disturbance and biotic interactions play a larger role in shaping trait combinations than broader macro-environmental drivers.
View Article and Find Full Text PDF

Combining landscape ecology and genetics provides an excellent framework to appreciate pest population dynamics and dispersal. The genetic architectures of many species are always shaped by environmental constraints. Because little is known about the ecological and genetic traits of Tunisian whitefly populations, the main objective of this work is to highlight patterns of biodiversity, genetic structure and migration routes of this pest.

View Article and Find Full Text PDF

Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by would be reflected in the nutrient contents of the native species' leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by probably underly its aggressive invasiveness.

View Article and Find Full Text PDF

Spatial patterns of beta diversity are a major focus of ecology. They can be especially valuable in conservation planning. In this study, we used a generalized dissimilarity modeling approach to analyze and predict the spatial patterns of beta diversity for commercially exploited, demersal marine species assemblages along the Tunisian coasts.

View Article and Find Full Text PDF

Bottom trawl survey data are commonly used as a sampling technique to assess the spatial distribution of commercial species. However, this sampling technique does not always correctly detect a species even when it is present, and this can create significant limitations when fitting species distribution models. In this study, we aim to test the relevance of a mixed methodological approach that combines presence-only and presence-absence distribution models.

View Article and Find Full Text PDF