Publications by authors named "Sytze de Bruin"

This article describes a comprehensive framework for soil organic carbon density (SOCD, kg/m) modeling and mapping, based on spatiotemporal random forest (RF) and quantile regression forests (QRF). A total of 45,616 SOCD observations and various Earth observation (EO) feature layers were used to produce 30 m SOCD maps for the EU at four-year intervals (2000-2022) and four soil depth intervals (0-20 cm, 20-50 cm, 50-100 cm, and 100-200 cm). Per-pixel 95% probability prediction intervals (PIs) and extrapolation risk probabilities are also provided.

View Article and Find Full Text PDF

Soil compaction caused by heavy agricultural machinery poses a significant challenge to sustainable farming by degrading soil health, reducing crop productivity, and disrupting environmental dynamics. Field traffic optimization can help abate compaction, yet conventional algorithms have mostly focused on minimizing route length while overlooking soil compaction dynamics in their cost function. This study introduces Soil2Cover, an approach that combines controlled traffic farming principles with the SoilFlex model to minimize soil compaction by optimizing machinery paths.

View Article and Find Full Text PDF

Countries within the tropics face ongoing challenges in completing or updating their national forest inventories (NFIs), critical for estimating aboveground biomass (AGB) and for forest-related greenhouse gas (GHG) accounting. While previous studies have explored the integration of map information with local reference data to fill in data gaps, limited attention has been given to the specific challenges presented by the clustered plot designs frequently employed by NFIs when combined with remote sensing-based biomass map units. This research addresses these complexities by conducting four country case-studies, encompassing a variety of NFI characteristics within a range of AGB densities.

View Article and Find Full Text PDF

Countries have pledged to different national and international environmental agreements, most prominently the climate change mitigation targets of the Paris Agreement. Accounting for carbon stocks and flows (fluxes) is essential for countries that have recently adopted the United Nations System of Environmental-Economic Accounting - ecosystem accounting framework (UNSEEA) as a global statistical standard. In this paper, we analyze how spatial carbon fluxes can be used in support of the UNSEEA carbon accounts in five case countries with available in-situ data.

View Article and Find Full Text PDF

The global potential distribution of biomes (natural vegetation) was modelled using 8,959 training points from the BIOME 6000 dataset and a stack of 72 environmental covariates representing terrain and the current climatic conditions based on historical long term averages (1979-2013). An ensemble machine learning model based on stacked regularization was used, with multinomial logistic regression as the meta-learner and spatial blocking (100 km) to deal with spatial autocorrelation of the training points. Results of spatial cross-validation for the BIOME 6000 classes show an overall accuracy of 0.

View Article and Find Full Text PDF

National forest inventories (NFIs) are a reliable source for national forest measurements. However, they are usually not developed for linking with remotely sensed (RS) biomass information. There are increasing needs and opportunities to facilitate this link towards better global and national biomass estimation.

View Article and Find Full Text PDF

The use of spectral data is seen as a fast and non-destructive method capable of monitoring pasture biomass. Although there is great potential in this technique, both end users and sensor manufacturers are uncertain about the necessary sensor specifications and achievable accuracies in an operational scenario. This study presents a straightforward parametric method able to accurately retrieve the hyperspectral signature of perennial ryegrass () canopies from multispectral data collected within a two-year period in Australia and the Netherlands.

View Article and Find Full Text PDF

Crop varieties should fulfill multiple requirements, including agronomic performance and product quality. Variety evaluations depend on data generated from field trials and sensory analyses, performed with different levels of participation from farmers and consumers. Such multi-faceted variety evaluation is expensive and time-consuming; hence, any use of these data should be optimized.

View Article and Find Full Text PDF

River discharges are often predicted based on a calibrated rainfall-runoff model. The major sources of uncertainty, namely input, parameter and model structural uncertainty must all be taken into account to obtain realistic estimates of the accuracy of discharge predictions. Over the past years, Bayesian calibration has emerged as a suitable method for quantifying uncertainty in model parameters and model structure, where the latter is usually modelled by an additive or multiplicative stochastic term.

View Article and Find Full Text PDF

To target food security interventions for smallholder households, decision makers need large-scale information, such as maps on poverty, food security and key livelihood activities. Such information is often based on expert knowledge or aggregated data, despite the fact that food security and poverty are driven largely by processes at the household level. At present, it is unclear if and how household level information can contribute to the spatial prediction of such welfare indicators or to what extent local variability is ignored by current mapping efforts.

View Article and Find Full Text PDF

This paper describes an interactive web-based near real-time (NRT) forest monitoring system using four levels of geographic information services: 1) the acquisition of continuous data streams from satellite and community-based monitoring using mobile devices, 2) NRT forest disturbance detection based on satellite time-series, 3) presentation of forest disturbance data through a web-based application and social media and 4) interaction of the satellite based disturbance alerts with the end-user communities to enhance the collection of ground data. The system is developed using open source technologies and has been implemented together with local experts in the UNESCO Kafa Biosphere Reserve, Ethiopia. The results show that the system is able to provide easy access to information on forest change and considerably improves the collection and storage of ground observation by local experts.

View Article and Find Full Text PDF
Article Synopsis
  • Vegetation is crucial for understanding land-cover and climate, typically measured through remotely sensed vegetation indices (VI), but the underlying processes behind their changes over large areas are not well understood.
  • This study investigates the spatial relationships between changes in climate factors (temperature, precipitation, solar radiation) and vegetation activity from 1982 to 2008, using a spatial model to analyze these relationships.
  • The findings reveal that over 50% of variations in vegetation activity can be linked to climatic changes, with notable greening trends and browning hotspots in regions like Argentina and Australia, alongside evidence of human influence and overlooked environmental factors, particularly in subequatorial Africa.
View Article and Find Full Text PDF

In case of an environmental accident, initially available data are often insufficient for properly managing the situation. In this paper, new sensor observations are iteratively added to an initial sample by maximising the global expected value of information of the points for decision making. This is equivalent to minimizing the aggregated expected misclassification costs over the study area.

View Article and Find Full Text PDF

Monitoring tropical deforestation and forest degradation is one of the central elements for the Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD+) scheme. Current arrangements for monitoring are based on remote sensing and field measurements. Since monitoring is the periodic process of assessing forest stands properties with respect to reference data, adopting the current REDD+ requirements for implementing monitoring at national levels is a challenging task.

View Article and Find Full Text PDF

This paper describes the development of a sensor web based approach which combines earth observation and in situ sensor data to derive typical information offered by a dynamic web mapping service (WMS). A prototype has been developed which provides daily maps of vegetation productivity for the Netherlands with a spatial resolution of 250 m. Daily available MODIS surface reflectance products and meteorological parameters obtained through a Sensor Observation Service (SOS) were used as input for a vegetation productivity model.

View Article and Find Full Text PDF