Publications by authors named "Sylvain Cremoux"

Background: Characterization of motor deficits after brain injury is important for rehabilitation personalization. While studies reported abnormalities in the kinematics of paretic and non-paretic elbow extension for patients with brain injuries, kinematic analysis is not sufficient to explore how patients deal with musculoskeletal redundancy and the energetic aspect of movement execution. Conversely, interarticular coordination and movement kinetics can reflect patients' motor strategies.

View Article and Find Full Text PDF

Different research fields, such as biomechanics, medical engineering or neurosciences take part in the development of biomechanical models allowing for the estimation of individual muscle forces involved in motor action. The heterogeneity of the terminology used to describe these models according to the research field is a source of confusion and can hamper collaboration between the different fields. This paper proposes a common language based on lexical disambiguation and a synthesis of the terms used in the literature in order to facilitate the understanding of the different elements of biomechanical modeling for force estimation, without questioning the relevance of the terms used in each field or the different model components or their interest.

View Article and Find Full Text PDF

Human perception of time is far from accurate and is subject to distortions. Previous research has demonstrated that any manipulation that distorts the perceived velocity of visible moving objects may shift prediction motion (PM) performance during occlusion. However, it is not clear whether motor action has the same influence during occlusion in the PM task.

View Article and Find Full Text PDF

Introduction: Postural instability increases with age and is exacerbated in neurological disorders such as Parkinson's disease (PD). Reducing the base of support from bipedal to unipedal stance increases center of pressure (CoP) parameters and intermuscular coherence in lower-leg muscles of healthy older adults. To further develop an understanding of postural control in an altered state of neurological impairment, we explored intermuscular coherence in lower-leg muscles and CoP displacement in older adults with PD.

View Article and Find Full Text PDF

Mirror contractions refer to unintended contractions of the contralateral homologous muscles during voluntary unilateral contractions or movements. Exaggerated mirror contractions have been found in several neurological diseases and indicate dysfunction or lesion of the cortico-spinal pathway. The present study investigates mirror contractions and the associated interhemispheric and corticomuscular interactions in adults with spinal cord injury (SCI) - who present a lesion of the cortico-spinal tract - compared to able-bodied participants (AB).

View Article and Find Full Text PDF

Introduction: This study investigated self-paced voluntary oscillations of scoliotic and non-scoliotic girls. Temporal variables and frequency coherence were calculated for the overall, low and high frequency bandwidths of the center of pressure excursions and free-moment to identify which variables best describe sway balance modalities in both groups.

Methods: Twenty-three girls with adolescent idiopathic moderate scoliosis (spinal curves to the right) formed the scoliotic group and 19 matched able-bodied girls formed the non-scoliotic group.

View Article and Find Full Text PDF

Strength training (ST) induces corticomuscular adaptations leading to enhanced strength. ST alters the agonist and antagonist muscle activations, which changes the motor control, i.e.

View Article and Find Full Text PDF

Over recent years, a growing body of research has highlighted the neural plastic effects of spinal manipulation on the central nervous system. Recently, it has been shown that spinal manipulation improved outcomes, such as maximum voluntary force and limb joint position sense, reflecting improved sensorimotor integration and processing. This study aimed to further evaluate how spinal manipulation can alter neuromuscular activity.

View Article and Find Full Text PDF

: Advancing age is associated with a decrease in step length. In line with previous studies showing that older adults often overestimate their motor abilities, we investigate whether older adults overestimate the length of their first step during gait initiation. The underlying effect could be a failure to update the internal model of motor action as a function of age-related motor decline.

View Article and Find Full Text PDF

Background: This study test if the frequency coherence calculated for the overall, low and high frequency bandwidths of the center of pressure excursions and free-moment calculated during standing balance are similar between scoliotic and non-scoliotic girls and if the coherence values within each frequency band are comparable for a given group of girls.

Methods: Twenty-nine girls with adolescent idiopathic scoliosis formed the scoliotic group and 22 able-bodied girls formed the non-scoliotic group. Each girl maintained a quiet upright stance on a force plate.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) can be used to induce neural plasticity in the human nervous system by pairing motor cortical activity with relevant afferent feedback, which can be used in neurorehabilitation. The aim of this study was to identify the optimal type or combination of afferent feedback modalities to increase cortical excitability in a BCI training intervention. In three experimental sessions, 12 healthy participants imagined a dorsiflexion that was decoded by a BCI which activated relevant afferent feedback: (1) electrical nerve stimulation (ES) (peroneal nerve-innervating tibialis anterior), (2) passive movement (PM) of the ankle joint, or (3) combined electrical stimulation and passive movement (Comb).

View Article and Find Full Text PDF

During isometric contractions, the net joint torque stability is modulated with the force production phases, i.e., increasing (IFP), holding (HFP), and decreasing force (DFP) phases.

View Article and Find Full Text PDF

The ability to learn motor tasks is important in both healthy and pathological conditions. Measurement tools commonly used to quantify the neurophysiological changes associated with motor training such as transcranial magnetic stimulation and functional magnetic resonance imaging pose some challenges, including safety concerns, utility, and cost. EEG offers an attractive alternative as a quantification tool.

View Article and Find Full Text PDF

Antagonist muscle co-activation is thought to be partially regulated by cortical influences, but direct motor cortex involvement is not fully understood. Corticomuscular coherence (CMC) measures direct functional coupling of the motor cortex and muscles. As antagonist co-activation differs according to training status, comparison of CMC in agonist and antagonist muscles and in strength-trained and endurance-trained individuals may provide in-depth knowledge of cortical implication in antagonist muscle co-activation.

View Article and Find Full Text PDF

After spinal cord injury (SCI), the reorganization of the neuromuscular system leads to increased antagonist muscles' co-activation-that is, increased antagonist vs. agonist muscles activation ratio-during voluntary contractions. Increased muscle co-activation is supposed to result from reduced cortical influences on spinal mechanisms inhibiting antagonist muscles.

View Article and Find Full Text PDF

It is known that anxiety (ANX) impairs action-perception coupling. This study tests whether this impairment could be associated with an alteration of the sensorimotor function. To this aim, the cortical activities underlying the sensorimotor function were recorded in twelve volunteers in a reach-to-grasp paradigm, in which the level of ANX and the position of a glass were manipulated.

View Article and Find Full Text PDF

Objective: After spinal cord injury (SCI), the antagonist muscles activation is increased during voluntary contractions and reflex conditioning protocols. This increase can be the result of both muscle atrophy and reciprocal facilitation mechanism. It remains however unclear to what extent increased antagonist muscles activation could be rather attributable to central vs.

View Article and Find Full Text PDF

It is well documented that changes in the physiological states of the perceiver-actor influence the perception of action capabilities. However, because experimental procedures of most studies involved a limitless availability for stimuli visual encoding and perceptual strategies, it remains difficult to adopt a single position among the large range of alternative interpretations for impaired perception. A reaching-to-grasp paradigm under breathing restriction was adapted from Graydon et al.

View Article and Find Full Text PDF

Electroencephalographic (EEG) studies have well established that motor cortex (M1) activity ~20 Hz decreases during muscular contraction and increases as soon as contraction stops, which are known as event-related desynchronization (ERD) and event-related synchronization (ERS), respectively. ERD is supposed to reflect M1 activation, sending information to recruited muscles, while the process underlying ERS is interpreted either as active cortical inhibition or as processing of sensory inputs. Investigation of the process behind ERD/ERS in people with spinal cord injury (SCI) would be particularly relevant since their M1 remains effective despite decreased sensorimotor abilities.

View Article and Find Full Text PDF

Objective: This study investigated the effects of a cervical spinal cord injury (SCI) on the modulation of cortical desynchronization (ERD) during isometric contractions at different force levels.

Methods: For 8 able-bodied (AB) and 6 cervical SCI participants, the net joint moment and electroencephalographic activities were recorded during isometric contractions of the right elbow in flexion and in extension at 3 force levels, that is, during intact and altered muscle contractions for SCI participants. The mean net moment and ∼20 Hz ERD from C3 electroencephalographic electrode were compared between AB and SCI participants.

View Article and Find Full Text PDF