Adalimumab, a humanized IgG1 monoclonal antibody is currently used to treat inflammatory diseases. However, a sensitive, in-house ELISA for evaluating inter- and intra-individual pharmacokinetic variability of adalimumab remains limited. In this study, an ELISA was developed to measure adalimumab levels, using recombinant human TNF-α (rhTNF-α) as capture antibody.
View Article and Find Full Text PDFMultiproduct manufacturing of biotherapeutic proteins generate cleaning-induced protein degradants because of extreme pH and temperature conditions during the cleaning process. Cleaning Acceptance limits are calculated based on the maximum allowable carryover (MAC) assessment of the previously manufactured active pharmaceutical ingredient (API) - or drug product - based on the permitted daily exposure (PDE) of the previously manufactured API into the dose of subsequent product. In this study, we tested a previously determined PDE value for cleaning-induced protein degradants of 650 µg/dose.
View Article and Find Full Text PDFParkinsonism Relat Disord
April 2024
Introduction: Current evidence in the literature is inconclusive due to conflicting results with regards to an association between B/L (B/L) oophorectomy and Parkinson's disease (PD). We included large, powered studies to assess the association of PD in women who have undergone B/L oophorectomy.
Methods: We conducted a comprehensive search across three databases from inception to October 2022 for observational studies including pre-menopausal or post-menopausal women undergoing B/L oophorectomy.
Objective: Intracranial pressure (ICP) is an important therapeutic target in many critical neuropathologies. The current tools for ICP measurements are invasive; hence, these are only selectively applied in critical cases where the benefits surpass the risks. To address the need for low-risk ICP monitoring, the authors developed a noninvasive alternative.
View Article and Find Full Text PDFDiffuse correlation spectroscopy (DCS) has been widely explored for its ability to measure cerebral blood flow (CBF), however, mostly under the assumption that the human head is homogenous. In addition to CBF, knowledge of extracerebral layers, such as skull thickness, can be informative and crucial for patient with brain complications such as traumatic brain injuries. To bridge the gap, this study explored the feasibility of simultaneously extracting skull thickness and flow in the cortex layer using DCS.
View Article and Find Full Text PDFMonitoring of the in vivo tumor state to track therapeutic response in real time may help to evaluate new drug candidates, maximize treatment efficacy, and reduce the burden of overtreatment. Current preclinical tumor imaging methods have largely focused on anatomic imaging (e.g.
View Article and Find Full Text PDFBackground: Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment.
View Article and Find Full Text PDF: Spatial frequency domain imaging (SFDI) is a diffuse optical measurement technique that can quantify tissue optical absorption (μ) and reduced scattering (
Diffuse optical imaging (DOI) techniques provide a wide-field or macro assessment of the functional tumor state and have shown substantial promise for monitoring treatment efficacy in cancer. Conversely, intravital microscopy provides a high-resolution view of the tumor state and has played a key role in characterizing treatment response in the preclinical setting. There has been little prior work in investigating how the macro and micro spatial scales can be combined to develop a more comprehensive and translational view of treatment response.
View Article and Find Full Text PDFSpatial frequency domain imaging (SFDI) is a widefield, noncontact, and label-free imaging modality that is currently being explored as a new tool for longitudinal tracking of cancer therapies in the preclinical setting. We describe a two-layer look-up-table (LUT) inversion algorithm for SFDI that better accounts for the skin (top layer) and tumor (bottom layer) tissue geometry in subcutaneous tumor models. Monte Carlo (MC) simulations were conducted natively in the spatial frequency domain, avoiding discretization errors associated with Fourier or Hankel transforms of conventional MC simulation results.
View Article and Find Full Text PDFBiomed Opt Express
February 2018
Spatial frequency domain imaging (SFDI) is a wide-field diffuse optical imaging modality that has attracted considerable interest in recent years. Typically, diffuse reflectance measurements of spatially modulated light are used to quantify the optical absorption and reduced scattering coefficients of tissue, and with these, chromophore concentrations are extracted. However, uncertainties in estimated absorption and reduced scattering coefficients are rarely reported, and we know of no method capable of providing these when look-up table (LUT) algorithms are used to recover the optical properties.
View Article and Find Full Text PDFBiomed Opt Express
October 2016
Determination of chemotherapy efficacy early during treatment would provide more opportunities for physicians to alter and adapt treatment plans. Diffuse optical technologies may be ideally suited to track early biological events following chemotherapy administration due to low cost and high information content. We evaluated the use of spatial frequency domain imaging (SFDI) to characterize a small animal tumor model in order to move towards the goal of endogenous optical monitoring of cancer therapy in a controlled preclinical setting.
View Article and Find Full Text PDFBiomed Opt Express
June 2016
Spatial frequency domain imaging (SFDI) is a widefield imaging technique that allows for the quantitative extraction of tissue optical properties. SFDI is currently being explored for small animal tumor imaging, but severe imaging artifacts occur for highly curved surfaces (e.g.
View Article and Find Full Text PDFBiomed Opt Express
November 2015
Three-dimensional (3D) printing offers the promise of fabricating optical phantoms with arbitrary geometry, but commercially available thermoplastics provide only a small range of physiologically relevant absorption (µa) and reduced scattering (µs`) values. Here we demonstrate customizable acrylonitrile butadiene styrene (ABS) filaments for dual extrusion 3D printing of tissue mimicking optical phantoms. µa and µs` values were adjusted by incorporating nigrosin and titanium dioxide (TiO2) in the filament extrusion process.
View Article and Find Full Text PDF