The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C.
View Article and Find Full Text PDFDespite an increasing understanding of the essential role of the Mei2 gene encoding an RNA-binding protein (RBP) in premeiotic DNA synthesis and meiosis in yeasts and animals, the functional roles of the mei2-like genes in plant growth and development are largely unknown. Contrary to other mei2-like RBPs that contain three RNA-recognition motifs (RRMs), the mei2 C-terminal RRM only (MCT) is unique in that it harbors only the last C-terminal RRM. Although MCTs have been implicated to play important roles in plants, their functional roles in stress responses as well as plant growth and development are still unknown.
View Article and Find Full Text PDFDespite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested.
View Article and Find Full Text PDFAlthough seven proteins unique to U12 intron-specific minor spliceosomes, denoted as U11/U12-65K, -59K, -48K, -35K, -31K, -25K, and -20K, have been identified in humans and the roles of some of them have been demonstrated, the functional role of most of these proteins in plants is not understood. A recent study demonstrated that Arabidopsis U11/U12-65K is essential for U12 intron splicing and normal plant development. However, the structural features and sequence motifs important for 65 K binding to U12 snRNA and other spliceosomal proteins remain unclear.
View Article and Find Full Text PDF