Exposure to various allergens has been shown to increase expression of ORMDL3 in the lung in models of allergic asthma. Studies using genetically modified (transgenic or knock out) mice have revealed some of the functions of ORMDL3 in asthma pathogenesis, although amid debate. The goal of this study was to use targeted post-transcriptional downregulation of in allergen-challenged wild-type (WT) mice by RNA interference to further elucidate the functional role of ORMDL3 in asthma pathogenesis and evaluate a potential therapeutic option.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
August 2018
Fatty acid binding protein 4 (FABP4), a member of a family of lipid-binding proteins, is known to play a role in inflammation by virtue of its ability to regulate intracellular events such as lipid fluxes and signaling. Studies have indicated a proinflammatory role for FABP4 in allergic asthma although its expression and function in eosinophils, the predominant inflammatory cells recruited to allergic airways, were not investigated. We examined expression of FABP4 in murine eosinophils and its role in regulating cell recruitment in vitro as well as in cockroach antigen (CRA)-induced allergic airway inflammation.
View Article and Find Full Text PDFBackground: HSPGs are glycoproteins containing covalently attached heparan sulfate (HS) chains which bind to growth factors, chemokines, etc., and regulate various aspects of inflammation including cell recruitment. We previously showed that deletion of endothelial N-acetylglucosamine N-deacetylase-N-sulfotransferase-1 (Ndst1), an enzyme responsible for N-sulfation during HS biosynthesis, reduces allergic airway inflammation (AAI).
View Article and Find Full Text PDFJ Allergy Clin Immunol
December 2018
Background: Altered epithelial physical and functional barrier properties along with T1/T2 immune dysregulation are features of allergic asthma. Regulation of junction proteins to improve barrier function of airway epithelial cells has the potential for alleviation of allergic airway inflammation.
Objective: We sought to determine the immunomodulatory effect of knob protein of the adenoviral capsid on allergic asthma and to investigate its mechanism of action on airway epithelial junction proteins and barrier function.
Proc Natl Acad Sci U S A
August 2016
Galectin-1 (Gal-1), a glycan-binding protein with broad antiinflammatory activities, functions as a proresolving mediator in autoimmune and chronic inflammatory disorders. However, its role in allergic airway inflammation has not yet been elucidated. We evaluated the effects of Gal-1 on eosinophil function and its role in a mouse model of allergic asthma.
View Article and Find Full Text PDFHeparan sulfate (HS) proteoglycans (HSPGs) participate in several aspects of inflammation because of their ability to bind to growth factors, chemokines, interleukins and extracellular matrix proteins as well as promote inflammatory cell trafficking and migration. We investigated whether HSPGs play a role in the development of airway remodeling during chronic allergic asthma using mice deficient in endothelial- and leukocyte-expressed N-deacetylase/N-sulfotransferase-1 (Ndst1), an enzyme involved in modification reactions during HS biosynthesis. Ndst1-deficient and wild-type (WT) mice exposed to repetitive allergen (ovalbumin [OVA]) challenge were evaluated for the development of airway remodeling.
View Article and Find Full Text PDFObesity is an important risk factor for asthma but the mechanistic basis for this association is not well understood. In the current study, the impact of obesity on lung inflammatory responses after allergen exposure was investigated. C57BL/6 mice maintained on a high-fat diet (HFD) or a normal diet (ND) after weaning were sensitized and challenged with cockroach allergen (CRA).
View Article and Find Full Text PDFORM (yeast)-like protein isoform 3 (ORMDL3) has recently been identified as a candidate gene for susceptibility to asthma; however, the mechanisms by which it contributes to asthma pathogenesis are not well understood. Here we demonstrate a functional role for ORMDL3 in eosinophils in the context of allergic inflammation. Eosinophils recruited to the airways of allergen-challenged mice express ORMDL3.
View Article and Find Full Text PDFFront Pharmacol
April 2013
Galectin-3 (Gal-3), a β galactoside-binding lectin, is implicated in the pathogenesis of allergic airway inflammation and allergen-challenged mice deficient in Gal-3 (Gal-3(-/-)) exhibit decreased airway recruitment of eosinophils (Eos). Gal-3 is expressed and secreted by several cell types and can thus function extracellularly and intracellularly to regulate a variety of cellular responses. We sought to determine the role of Eos-expressed Gal-3 in promoting Eos trafficking and migration in the context of allergic airway inflammation using bone marrow (BM)-derived Eos from wild-type (WT) and Gal-3(-/-) mice.
View Article and Find Full Text PDFAssociation of the neurotransmitter serotonin (5-HT) with the pathogenesis of allergic asthma is well recognized and its role as a chemoattractant for eosinophils (Eos) in vitro and in vivo has been previously demonstrated. Here we have examined the regulation of 5-HT-induced human and murine Eos trafficking and migration at a cellular and molecular level. Eos from allergic donors and bone marrow-derived murine Eos (BM-Eos) were found to predominantly express the 5-HT2A receptor.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
June 2012
Trafficking and recruitment of eosinophils during allergic airway inflammation is mediated by the phosphatidylinositol 3-kinase (PI3K) family of signaling molecules. The role played by the p110δ subunit of PI3K (PI3K p110δ) in regulating eosinophil trafficking and recruitment was investigated using a selective pharmacological inhibitor (IC87114). Treatment with the PI3K p110δ inhibitor significantly reduced murine bone marrow-derived eosinophil (BM-Eos) adhesion to VCAM-1 as well as ICAM-1 and inhibited activation-induced changes in cell morphology associated with reduced Mac-1 expression and aberrant cell surface localization/distribution of Mac-1 and α4.
View Article and Find Full Text PDFEosinophils are the predominant inflammatory cells recruited to allergic airways. In this article, we show that human and murine eosinophils express SWAP-70, an intracellular RAC-binding signaling protein, and examine its role in mediating eosinophil trafficking and pulmonary recruitment in a murine model of allergic airway inflammation. Compared with wild-type eosinophils, SWAP-70-deficient (Swap-70(-/-)) eosinophils revealed altered adhesive interactions within inflamed postcapillary venules under conditions of blood flow by intravital microscopy, exhibiting enhanced slow rolling but decreased firm adhesion.
View Article and Find Full Text PDFAllergic airway inflammation, including asthma, is usually characterized by the predominant recruitment of eosinophils. However, neutrophilia is also prominent during severe exacerbations. Cell surface-expressed glycans play a role in leukocyte trafficking and recruitment during inflammation.
View Article and Find Full Text PDFThe role played by the beta-galactoside-binding lectin galectin-3 (Gal-3) in airway remodeling, a characteristic feature of asthma that leads to airway dysfunction and poor clinical outcome in humans, was investigated in a murine model of chronic allergic airway inflammation. Wild-type (WT) and Gal-3 knockout (KO) mice were subjected to repetitive allergen challenge with OVA up to 12 wk, and bronchoalveolar lavage fluid (BALF) and lung tissue collected after the last challenge were evaluated for cellular features associated with airway remodeling. Compared to WT mice, chronic OVA challenge in Gal-3 KO mice resulted in diminished remodeling of the airways with significantly reduced mucus secretion, subepithelial fibrosis, smooth muscle thickness, and peribronchial angiogenesis.
View Article and Find Full Text PDFJ Proteome Res
March 2009
Receptor interacting protein 140 (RIP140) undergoes extensive post-translational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its subcellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg(240), Arg(650), and Arg(948) suppresses the repressive activity of RIP140.
View Article and Find Full Text PDFTR2 is an orphan nuclear receptor specifically expressed in early embryos (Wei and Hsu, 1994), and a transcription factor for transcriptional regulation of important genes in stem cells including the gate keeper Oct4 (Park et al. 2007). TR2 is known to function as an activator (Wei et al.
View Article and Find Full Text PDFJ Proteome Res
October 2008
Metabolic labeling and detection with a methylated lysine-specific antibody confirm lysine methylation of RAR alpha in mammalian cells. We previously reported Lys (347) trimethylation of mouse retinoic acid receptor alpha (RAR alpha) in the ligand binding domain (LBD) that affected ligand sensitivity of the dissected LBD. Here we report two monomethylated residues, Lys (109) and Lys (171) identified by LC-ESI-MS/MS in the DNA binding domain (DBD) and the hinge region, which affect retinoic acid (RA) sensitivity, coregulator interaction and heterodimerization with retinoid X receptor (RXR) in the context of the full-length protein.
View Article and Find Full Text PDFWe previously reported an intricate mechanism underlying the homeostasis of Oct4 expression in normally proliferating stem cell culture of P19, mediated by SUMOylation of orphan nuclear receptor TR2. In the present study, we identify a signaling pathway initiated from the nongenomic activity of all-trans retinoic acid (atRA) to stimulate complex formation of extracellular signal-regulated kinase 2 (ERK2) with its upstream kinase, mitogen-activated protein kinase kinase (MEK). The activated ERK2 phosphorylates threonine-210 (Thr-210) of TR2, stimulating its subsequent SUMOylation.
View Article and Find Full Text PDFReceptor-interacting protein 140 is a co-regulator for many transcription factors. Previous mass spectrometry studies showed that either phosphorylation or lysine acetylation of RIP140 directly enhanced its trans-repressive activity. In this study, we first identified p300 as a specific lysine acetyltransferase, and extracellular-signal-related kinase 2 (Erk2) as a specific kinase for threonine phosphorylation, of RIP140 in vivo.
View Article and Find Full Text PDFHybridoma (Larchmt)
December 2006
Lysosomes are responsible for the degradation of macromolecules derived from the cell exterior by endocytosis, or from within the cell by autophagy. While our knowledge of the biosynthesis and targeting of lysosomal hydrolases is considerable, much less is known about the lysosomal membrane itself. To identify the lysosomal membrane proteins that mediate these functions, we have isolated lysosomes from amebae and injected them into mice to produce monoclonal antibodies (MAbs).
View Article and Find Full Text PDFNat Struct Mol Biol
January 2007
The Tr2 orphan nuclear receptor can be SUMOylated, resulting in the replacement of coregulators recruited to the regulatory region of its endogenous target gene, Oct4. UnSUMOylated Tr2 activates Oct4, enhancing embryonal carcinoma-cell proliferation, and is localized to the promyelocytic leukemia (Pml) nuclear bodies. When its abundance is elevated, Tr2 is SUMOylated at Lys238 and seems to be released from the nuclear bodies to act as a repressor.
View Article and Find Full Text PDF