Publications by authors named "Suneel Kumar Srivastava"

Aquatic biota and human health are seriously threatened by the dramatic rise in antibiotics in environmental matrices. In this regard, the present study aims to improve knowledge of the combined effects of heterojunction design and defect engineering on the photocatalytic degradation of pharmaceuticals in aqueous matrices. Advantageously, the positioning of the valence band (VB) and conduction band (CB) levels of S@g-CN, being higher than those of BiMoO, demonstrates the feasibility of forming a type-II heterojunction between these materials.

View Article and Find Full Text PDF

Retrieving the spent photocatalysts from the reaction system is always a challenging task. Therefore, the present work is focused on immobilizing sulfur-doped-BiO/MnO (S-BOMO) heterojunction photocatalysts over different support matrices and evaluating their performance for the removal of sulfamethoxazole (SMX) in water under visible light. Our findings revealed S-BOMO coated clay beads (S-BOMO CCB) achieving more than 86% (240 min) SMX degradation ∼3, ∼1.

View Article and Find Full Text PDF

The present study is focused on room-temperature synthesis carried out by reduction of an aqueous silver nitrate (AgNO) and AgNO/graphene oxide (GO) dispersion using a low-cost commercial Fehling B solution in one step to form silver quantum dots (Ag QDs) and their Ag/reduced graphene oxide (Ag/RGO) nanocomposites and their characterization. The crystallinity, surface chemistry, structural, and morphological studies indicated the formation of crystalline small-sized quasispherical-functionalized Ag particles distributed uniformly on the surface of RGO. The conductivity measurements further showed an improvement in the conductivity of Ag/RGO nanocomposites as compared to neat Ag QDs.

View Article and Find Full Text PDF

Dyes are considered as recalcitrant compounds and are not easily removed through conventional water treatment processes. The present study demonstrated the fabrication of polyaniline hollow microsphere (PNHM)/MnO/FeO composites by in situ deposition of MnO and FeO nanoparticles on the surface of PNHM. The physicochemical characteristics and adsorption behavior of the prepared PNHM/MnO/FeO composites towards the removal of toxic methyl green (MG) and Congo red (CR) dyes have been investigated.

View Article and Find Full Text PDF

The evolution of high electromagnetic absorption materials is essential in the fast growing electronic industry in overcoming electromagnetic pollution. In view of this, a series of Ni nanoparticle-decorated functionalized graphene sheets (FG/Ni) are synthesized by a solvothermal method using different ratios of FG/Ni precursors. Subsequently, FG/Ni is subjected to in situ polymerization of aniline to form FG/Ni/PANI ternary composites and characterized.

View Article and Find Full Text PDF

The presence of microcapacitors near percolatrion threshold determines dielectric permittivity of a material. Motivated by this concept, we focused our work by preferentially allocating functionalized reduced graphene oxide (FRGO) in hard segment (disperse phase) of Thermoplastic polyurethane (TPU) by solution blending method and characterized. Morphological studies of TPU/FRGO nanocomposites established homogeneous dispersion of FRGO throughout the TPU matrix.

View Article and Find Full Text PDF

The present work is focused on the fabrication of manganese dioxide/carbon dots (MnO₂/CDs) nanocomposites at room temperature co-participation method in an aqueous medium and characterized. Our study showed that the concentration of CDs controls the morphology of MnO₂/CDs nanocomposite and also acted as a reducing agent to convert potassium permanganate (KMnO₄) to MnO₂. Subsequently, nanoflowers, quasi-spherical particles, broken, and interconnected chain type of morphology was observed by adding dispersion of 0.

View Article and Find Full Text PDF

The present work is focused on fabrication of reduced graphene oxide/iron(II/III) oxide/polyaniline (RGO/FeO/PANI) ternary composite by a hydrothermal method, its characterization, and application in the development of a high microwave absorbing shielding material. The RGO/FeO/PANI composite showed dramatic enhancement of dielectric loss and magnetic loss compared to FeO/PANI and RGO/FeO binary composites. This is ascribed to the embedment of more heterostructure phases.

View Article and Find Full Text PDF

This study is focused on the preparation of the CuS/RGO nanocomposite via the hydrothermal method using GO and Cu-DTO complex as precursors. X-ray diffraction, Fourier-transform infrared spectroscopy, and Raman and X-ray photoelectron spectroscopy study revealed the formation of the CuS/RGO nanocomposite with improved crystallinity, defective nanostructure, and the presence of the residual functional group in the RGO sheet. The morphological study displayed the transformation of CuS from nanowire to quantum dots with the incorporation of RGO.

View Article and Find Full Text PDF

The present work reports on the fabrication of a lightweight microwave absorber comprising MnCoO prepared from the urea complex of manganese (Mn)/cobalt (Co) and nitrogen-doped reduced graphite oxide (NRGO) by facile hydrothermal method followed by annealing process and characterized. The phase analysis, compositional, morphological, magnetic, and conductivity measurements indicated dispersion of paramagnetic MnCoO spherical particles on the surface of NRGO. Our findings also showed that Mn, Co-urea complex, and GO in the weight ratio of 1:4 (NGMC3) exhibited maximum shielding efficiency in the range of 55-38 dB with absorption as an overall dominant shielding mechanism.

View Article and Find Full Text PDF

Microbial infections originating from medical care facilities are raising serious concerns across the globe. Therefore, nanotechnology-derived nanostructures have been investigated and explored due to their promising characteristics. In view of this, silver-based antimicrobial hydrogels as an alternative to antibiotic-based creams could play a crucial role in combating such infections.

View Article and Find Full Text PDF

The present work is focused on the synthesis of bismuth sulfide (Bi2S3) nanorod/reduced graphene oxide (RGO) composites via a one-step hydrothermal method using GO and bismuth nitrate in 5 : 1, 3 : 1 and 2 : 1 weight ratios and their characterization. The morphological studies revealed the formation of homogeneously dispersed Bi2S3 nanorods on RGO sheets along with occasional wrapping in the Bi2S3 nanorod/RGO (3 : 1) composite. XRD, FTIR, Raman and XPS studies suggested the incorporation of Bi2S3 in RGO sheets.

View Article and Find Full Text PDF

FeO@SiO@PPy core-shell nanocomposites were fabricated by the coating of SiO on FeO through base catalyzed hydrolysis of tetraethyl orthosilicate followed by encapsulation of polypyrrole (PPy). Subsequently, these trilaminar composites have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller, superconducting quantum interference devices, and measurement of the total shielding efficiency in the frequency range of 2-8 GHz. Our findings showed the highest total shielding efficiency (∼32 dB) of FeO@SiO@PPy (FeO@SiO/pyrrole wt/wt = 1:9) and followed reflection as the dominant shielding mechanism.

View Article and Find Full Text PDF

Polyaniline hollow microsphere (PNHM)/FeO magnetic nanocomposites have been synthesized by a novel strategy and characterized. Subsequently, PNHM/FeO-40 (FeO content: 40 wt.%) was used as an adsorbent for the removal of arsenic (As) from the contaminated water.

View Article and Find Full Text PDF

Though investigations have been made on several metal chalcogenides in hydrogen evolution reactions (HERs) and hydrogen oxidation reactions (HORs), antimony sulfide (SbS) has not generated much attention. In this direction, the present work reports on the synthesis of N, Ru codoped pellet drum bundle-like antimony sulfide (SbS) via a simple reflux method. Subsequent HER and HOR electrocatalytic investigations in 1 M KOH revealed their suitability as an efficient and inexpensive alternative to platinum, as is evident from the overpotential (72 mV at a current density of 10 mA cm), Tafel slope (193 mV/decade), exchange current density (1.

View Article and Find Full Text PDF

ZrO₂/MWCNT nanocomposites have been prepared by simple refluxing method and characterized by X-ray diffraction (XRD). Fourier-transform infrared spectroscopy (FTIR), and Raman analysis suggests chemical interactions present between zirconia and Multiwalled carbon nanotube (MWCNT) in the as prepared nanocomposites. Electromagnetic inteference shielding efficiencies (EMI SE) for the nanocomposites were found to increase with increasing amount of MWCNT loading.

View Article and Find Full Text PDF

The reinforcing ability of the fillers results in significant improvements in properties of polymer matrix at extremely low filler loadings as compared to conventional fillers. In view of this, the present review article describes the different methods used in preparation of different rubber nanocomposites reinforced with nanodimensional individual carbonaceous fillers, such as graphene, expanded graphite, single walled carbon nanotubes, multiwalled carbon nanotubes and graphite oxide, graphene oxide, and hybrid fillers consisting combination of individual fillers. This is followed by review of mechanical properties (tensile strength, elongation at break, Young modulus, and fracture toughness) and dynamic mechanical properties (glass transition temperature, crystallization temperature, melting point) of these rubber nanocomposites.

View Article and Find Full Text PDF

Tin oxide thin films were uniformly deposited by successive ionic layer adsorption reaction (SILAR) method on glass substrates using ethylene diamine as a complexing agent. The proper annealing treatment in air converts as-deposited amorphous films into crystalline and removes defects, reducing strain in the crystal lattice. The films were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FTIR) spectroscopy.

View Article and Find Full Text PDF

MWCNTs/hectorite 3D hybrid filler was prepared from the 1:1 combination by weight of constituent MWCNTs (1D) and hectorite (2D) through simple dry grinding method. The resulting hybrid filler was subsequently utilized for the preparation of Ethylene-co-vinyl acetate (EVA)/MWCNTs/hectorite nanocomposites by solution intercalation method. Transmission electron microscopy and X-ray diffraction studies of the nanocomposites confirm homogeneous dispersion of the fillers in the polymer matrix.

View Article and Find Full Text PDF

The present work is focused on the protective-agent-free synthesis of interconnected copper cobaltite (CuCoO) nanochains by temperature-controlled solvothermal method followed by post-thermal treatment of the precursors. Furthermore, CuCoO interconnected nanochains are employed as electrocatalyst for water oxidation in alkaline medium for the first time. Extensive studies of physiochemical properties showed the formation of interconnected 1D nanochains of CuCoO exhibiting a larger specific surface area (139.

View Article and Find Full Text PDF

The present work describes the dual role of graphene as an initiator and filler for polymerization of N-vinylcarbazole and formation of poly(N-vinylcarbazole)/graphene (PVK/Gr) nanocomposites. Fourier transformation infrared (FTIR) and X-ray diffraction (XRD) studies confirmed the formation of PVK as well its graphene nanocomposites. Scanning electron micrograph (SEM) and transmission electron microscopy (TEM) revealed the graphene platelets are dispersed in the matrix of spherical PVK.

View Article and Find Full Text PDF

Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features.

View Article and Find Full Text PDF

The present work is focused on the preparation of Fe nanorods by the chemical reduction of FeCl3 (aq) using NaBH4 in the presence of glycerol as template followed by annealing of the product at 500°C in the presence of H2 gas flow. Subsequently, its surface has been modified by silica followed by silver nanoparticles to form silica coated Fe (Fe@SiO2) and Ag encapsulated Fe@SiO2 nanostructure employing the Stöber method and silver mirror reaction respectively. XRD pattern of the products confirmed the formation of bcc phase of iron and fcc phase of silver, though silica remained amorphous.

View Article and Find Full Text PDF

The present work is focused on the preparation of tungsten disulfide-multiwalled carbon nanotube (WS2-MWCNT) hybrids by simple dry grinding of WS2 and MWCNT in different proportion by weight (1:3, 1:1, 3:1). The as prepared hybrids have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and Raman analyses. XRD results indicated complete exfoliation of MWCNT among WS2 particles in WS2-MWCNT (3:1) and (1:1) hybrids.

View Article and Find Full Text PDF

The present work deals with the preparation and characterization of silane grafted MMT (S-MMT), organomodified MMT (O-MMT) and silane grafted organomodified montmorillonite (OS-MMT) reinforced silicone rubber (SR) nanocomposites. XRD of SR filled with O-MMT (1-8 wt%), OS-MMT (1-8 wt%) and S-MMT (1-5 wt%) suggested the formation exfoliated morphology, which has also been supported by the corresponding TEM images of 3 wt% filled SR nanocomposites. TGA and DSC studies of SR/OS-MMT (3 wt%) nanocomposites have shown that the thermal stability, glass transition temperature and crystallization temperature are maximum improved with respect to neat SR by 50, 14 and 10 degrees C respectively.

View Article and Find Full Text PDF