Prostate cancer is the second leading malignancy in males. Prostate cancer can be easily curable if it is diagnosed at an early stage. The prognosis of patients with metastatic or resistant cases can also be improved if adequately characterized with biomarkers.
View Article and Find Full Text PDFCancer Metastasis Rev
February 2025
Breast cancer, with its diverse subtypes like ER-positive, HER-2-positive, and triple-negative, presents complex challenges demanding personalized treatment approaches. The intricate interplay of genetic, environmental, and lifestyle factors underscores its status as a primary contributor to cancer-related fatalities in women globally. Understanding the molecular drivers specific to each subtype is crucial for developing effective therapies.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
September 2024
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
October 2023
Temozolomide (TMZ) is the leading chemotherapeutic agent used for glioma therapy due to its good oral absorption and blood-brain barrier permeability. However, its anti-glioma efficacy may be limited due to its adverse effects and resistance development. O6-Methylguanine-DNA-methyltransferase (MGMT), an enzyme associated with TMZ resistance, is activated via the NF-κB pathway, which is found to be upregulated in glioma.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
August 2023
Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance.
View Article and Find Full Text PDFGlioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance.
View Article and Find Full Text PDFDevelopment of fluorescent imaging probes is an important topic of research for the early diagnosis of cancer. Based on the difference between the cellular environment of tumor cells and normal cells, several "smart" fluorescent probes have been developed. In this work, a glycopolymer functionalized Förster resonance energy transfer (FRET) based fluorescent sensor is developed, which can monitor the pH change in cellular system.
View Article and Find Full Text PDFDespite the advancement in research methodologies and technologies for cancer research, there is a high rate of anti-cancer drug attrition. In this review, we discuss different conventional and modern approaches in cancer research and how human-centric models can improve on the voids conferred by more traditional animal-centric models, thereby offering a more reliable platform for drug discovery. Advanced three-dimensional cell culture methodologies, along with computational analysis form the core of human-centric cancer research.
View Article and Find Full Text PDFPhotodynamic therapy has emerged as a noninvasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility, and tumor-targeting ability due to the presence of multiple sugar units.
View Article and Find Full Text PDFFusion genes are abnormal genes resulting from chromosomal translocation, insertion, deletion, inversion, etc. ETV6, a rather promiscuous partner forms fusions with several other genes, most commonly, the NTRK3 gene. This fusion leads to the formation of a constitutively activated tyrosine kinase which activates the Ras-Raf-MEK and PI3K/AKT/MAPK pathways, leading the cells through cycles of uncontrolled division and ultimately resulting in cancer.
View Article and Find Full Text PDFThe Transforming growth factor-β1 (TGF- β1) in the tumor microenvironment (TME) is the major cytokine that acts as a mediator of tumor-stroma crosstalk, which in fact has a dual role in either promoting or suppressing tumor development. The cancer-associated fibroblasts (CAFs) are the major cell types in the TME, and the interaction with most of the epithelial cancers is the prime reason for cancer survival. However, the molecular mechanisms, associated with the TGF- β1 induced tumor promotion through tumor-CAF crosstalk are not well understood.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
March 2022
Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis.
View Article and Find Full Text PDFConventionally, Cancer-associated fibroblasts (CAFs) are considered as an inducer of chemoresistance in cancer cells. However, the underlying mechanism by which carcinomas induce chemoresistance in CAFs through tumor-stroma cross-talk is largely unknown. Henceforth, we uncovered a network of paracrine signals between carcinoma and CAFs that drives chemoresistance in CAFs.
View Article and Find Full Text PDFGlobally, skin repair costs billion dollars per annum. Diversified matrices are fabricated to address this important area of healthcare. Most common limitations associated with them are the inflated production cost and insufficient functional repair.
View Article and Find Full Text PDFHemoglobin E (HbE)/β-thalassemia is a form of β-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels - a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/β-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
December 2020
Biomimetic characteristics of hydrogel scaffold are tuned in this study utilizing the synergy of alginate, gelatin, and microfluidically embedded voids. Superposition of alginate and gelatin polymer networks results in additional rigidity, which can be tuned by introduction of voids, and thereby allowing faster release of pore pressure through movement of aqueous phase through the pore network. More importantly, voids enabled the cells to penetrate from the surface of seeding into the depth of the scaffold and proliferate there, as demonstrated for MDA MB 231 breast cancer cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
Glioblastoma multiforme (GBM) is an aggressive cancer without currently effective therapies. Radiation and temozolomide (radio/TMZ) resistance are major contributors to cancer recurrence and failed GBM therapy. Heat shock proteins (HSPs), through regulation of extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT), provide mechanistic pathways contributing to the development of GBM and radio/TMZ-resistant GBM.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common primary brain tumor and is invariably fatal. Heat shock proteins (HSPs) provide protein signatures/biomarkers for GBM that afford potential as targets for developing anti-GBM drugs. In GBM, elevated expression of hypoxia inducible factors under the influence of Ets family proteins significantly promotes the expression of HSPs.
View Article and Find Full Text PDFUltrason Sonochem
January 2020
Ultrasonicaion is non-chemical process where acoustic waves have been targeted to aqueous medium dispersed precursor materials. In situ synthesis of silver nanoparticles anchored in hydrogel matrix has been opted via ~20 kHz frequency assisted (bath sonication) synthesis having the ultrasonication power intensity (UPI) of ~10 J/m. Power intensity is inversely proportional to the surface area of the clay tactoids.
View Article and Find Full Text PDFPhytother Res
October 2019
Glioma is one of the most perplexing cancers because of its infiltrating nature, molecular signaling, and location in central nervous system. Blood-brain barrier acts as a natural barrier to the glioma making it difficult to access by conventional chemotherapy. Clinicians are using natural compounds or their derivatives for several diseases including different cancers.
View Article and Find Full Text PDFInt J Biol Macromol
September 2019
The damage to the skin is most prominent and evident as it is our first line of defense and unremittingly under attack by biological and environmental factors. The restoration of the skin is dependent on the extent of the injury. To explore the prospects of new biomimetic material, bi-layered skin construct is fabricated in vitro with nonmulberry silk protein sericin and chitosan hydrogels using human dermal fibroblasts and keratinocytes.
View Article and Find Full Text PDFA well-defined glycopolymer based fluorescence active nanogel has been prepared via the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and Diels-Alder (DA) "click" chemistry. To prepare the nanogel, initially, a functional AB block copolymer (BCP) poly(pentafluorophenyl acrylate)--poly(furfuryl methacrylate) (PPFPA--PFMA), having activated pentafluorophenyl ester group, was synthesized via RAFT polymerization. The activated pentafluorophenyl functionality was replaced by the amine functionality of glucosamine to introduce the amphiphilic BCP poly[2-(acrylamido) glucopyranose]--poly(furfuryl methacrylate) (PAG--PFMA).
View Article and Find Full Text PDFPresence of carbon nanostructures (dots of 2-3 nm of diameter) in human blood plasma have been identified for the first time. The observed particles are N-doped carbon dots having surface active oxygen functional groups. This functionalized carbonaceous nanostructure may have been originated through catabolic processes of consumed foods and beverages.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
July 2019
Background: Epithelial to mesenchymal transition (EMT) and extracellular matrix (ECM) remodeling, are the two elemental processes promoting glioblastoma (GBM). In the present work we propose a mechanistic modelling of GBM and in process establish a hypothesis elucidating critical crosstalk between heat shock proteins (HSPs) and matrix metalloproteinases (MMPs) with synergistic upregulation of EMT-like process and ECM remodeling.
Methods: The interaction and the precise binding site between the HSP and MMP proteins was assayed computationally, in-vitro and in GBM clinical samples.