Publications by authors named "Stuart A Wilson"

Splicing in 3' untranslated regions (3' UTRs) is generally expected to elicit degradation via nonsense-mediated decay (NMD) due to the presence of an exon junction complex (EJC) downstream of the stop codon. However, 3' UTR intron (3UI)-containing transcripts are widespread and highly expressed in both normal tissues and cancers. We present a transcriptome assembly built from 7897 solid tumour and normal samples from The Cancer Genome Atlas.

View Article and Find Full Text PDF
Article Synopsis
  • RBMXL2, a nuclear protein specific to germ cells, represses cryptic splicing during meiosis and is crucial for male fertility, while its similar counterpart RBMX regulates splicing in somatic cells.
  • RBMX interacts with long exons and helps maintain genome stability by preventing the use of harmful splice sites, complementing the gene silencing that occurs during male meiosis.
  • Both RBMX and RBMXL2 share parallel functions across somatic and germline tissues, suggesting their roles in splicing have been evolutionarily conserved for over 200 million years.
View Article and Find Full Text PDF

Despite the nuclear localization of the mA machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively mA-modified. However, these findings are mostly based on mA-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of mA in CHIKV and DENV RNAs.

View Article and Find Full Text PDF

The epitranscriptomic modification -methyladenosine (mA) is a ubiquitous feature of the mammalian transcriptome. It modulates mRNA fate and dynamics to exert regulatory control over numerous cellular processes and disease pathways, including viral infection. Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation from the latent phase leads to the redistribution of mA topology upon both viral and cellular mRNAs within infected cells.

View Article and Find Full Text PDF

-methyladenosine (mA) is the most abundant internal RNA modification of cellular mRNAs. mA is recognised by YTH domain-containing proteins, which selectively bind to mA-decorated RNAs regulating their turnover and translation. Using an mA-modified hairpin present in the Kaposi's sarcoma associated herpesvirus (KSHV) RNA, we identified seven members from the 'Royal family' as putative mA readers, including SND1.

View Article and Find Full Text PDF

During gene expression, RNA export factors are mainly known for driving nucleo-cytoplasmic transport. While early studies suggested that the exon junction complex (EJC) provides a binding platform for them, subsequent work proposed that they are only recruited by the cap binding complex to the 5' end of RNAs, as part of TREX. Using iCLIP, we show that the export receptor Nxf1 and two TREX subunits, Alyref and Chtop, are recruited to the whole mRNA co-transcriptionally via splicing but before 3' end processing.

View Article and Find Full Text PDF

During synthesis, mRNA undergoes a number of modifications such as capping, splicing and polyadenylation. These processes are coupled with the orderly deposition of the TREX complex on the mRNA and subsequent recruitment of the NXF1-P15 heterodimer which stimulates the nuclear export of mature mRNAs. mRNAs also undergo a number of internal modifications, the most common of which is the N‑methyladenosine (mA) modification.

View Article and Find Full Text PDF

N-methyladenosine (mA) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Recruitment of the TREX mRNA export complex to mRNA is driven by transcription, 5' capping and pre-mRNA splicing.

View Article and Find Full Text PDF

TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression.

View Article and Find Full Text PDF

Cancer testis antigens (CTAs) represented a poorly characterized group of proteins whose expression is normally restricted to testis but are frequently up-regulated in cancer cells. Here we show that one CTA, Luzp4, is an mRNA export adaptor. It associates with the TREX mRNA export complex subunit Uap56 and harbours a Uap56 binding motif, conserved in other mRNA export adaptors.

View Article and Find Full Text PDF

Splicing factor proline- and glutamine-rich (SFPQ) also commonly known as polypyrimidine tract-binding protein-associated-splicing factor (PSF) and its binding partner non-POU domain-containing octamer-binding protein (NONO/p54nrb), are highly abundant, multifunctional nuclear proteins. However, the exact role of this complex is yet to be determined. Following purification of the endogeneous SFPQ/NONO complex, mass spectrometry analysis identified a wide range of interacting proteins, including those involved in RNA processing, RNA splicing, and transcriptional regulation, consistent with a multifunctional role for SFPQ/NONO.

View Article and Find Full Text PDF

Candida albicans hyphae grow in a highly polarized fashion from their tips. This polarized growth requires the continuous delivery of secretory vesicles to the tip region. Vesicle delivery depends on Sec2p, the Guanine Exchange Factor (GEF) for the Rab GTPase Sec4p.

View Article and Find Full Text PDF

GGGGCC repeat expansions of C9orf72 represent the most common genetic variant of amyotrophic lateral sclerosis and frontotemporal degeneration, but the mechanism of pathogenesis is unclear. Recent reports have suggested that the transcribed repeat might form toxic RNA foci that sequester various RNA processing proteins. Consensus as to the identity of the binding partners is missing and whole neuronal proteome investigation is needed.

View Article and Find Full Text PDF

The essential herpesvirus adaptor protein HVS ORF57, which has homologs in all other herpesviruses, promotes viral mRNA export by utilizing the cellular mRNA export machinery. ORF57 protein specifically recognizes viral mRNA transcripts, and binds to proteins of the cellular transcription-export (TREX) complex, in particular ALYREF. This interaction introduces viral mRNA to the NXF1 pathway, subsequently directing it to the nuclear pore for export to the cytoplasm.

View Article and Find Full Text PDF

The TREX complex couples nuclear mRNA processing events with subsequent export to the cytoplasm. TREX also acts as a binding platform for the mRNA export receptor Nxf1. The sites of mRNA transcription and processing within the nucleus have been studied extensively.

View Article and Find Full Text PDF

The TREX complex couples nuclear pre-mRNA processing with mRNA export and contains multiple protein components, including Uap56, Alyref, Cip29 and the multi-subunit THO complex. Here, we have identified Chtop as a novel TREX component. We show that both Chtop and Alyref activate the ATPase and RNA helicase activities of Uap56 and that Uap56 functions to recruit both Alyref and Chtop onto mRNA.

View Article and Find Full Text PDF

The metazoan TREX complex is recruited to mRNA during nuclear RNA processing and functions in exporting mRNA to the cytoplasm. Nxf1 is an mRNA export receptor, which binds processed mRNA and transports it through the nuclear pore complex. At present, the relationship between TREX and Nxf1 is not understood.

View Article and Find Full Text PDF

Melioidosis is a disease caused by infection with Burkholderia pseudomallei. The molecular basis for the pathogenicity of B. pseudomallei is poorly understood.

View Article and Find Full Text PDF

Temporal regulation of embryonic neurogenesis is controlled by hypostable transcription factors. The mechanism of the process is unclear. Here we show that the RNase III Drosha and DGCR8 (also known as Pasha), key components of the microRNA (miRNA) microprocessor, have important functions in mouse neurogenesis.

View Article and Find Full Text PDF

SRSF2 is a prototypical SR protein which plays important roles in the alternative splicing of pre-mRNA. It has been shown to be involved in regulatory pathways for maintaining genomic stability and play important roles in regulating key receptors in the heart. We report here the solution structure of the RNA recognition motifs (RRM) domain of free human SRSF2 (residues 9-101).

View Article and Find Full Text PDF

The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity.

View Article and Find Full Text PDF

The hTREX complex mediates cellular bulk mRNA nuclear export by recruiting the nuclear export factor, TAP, via a direct interaction with the export adaptor, Aly. Intriguingly however, depletion of Aly only leads to a modest reduction in cellular mRNA nuclear export, suggesting the existence of additional mRNA nuclear export adaptor proteins. In order to efficiently export Kaposi's sarcoma-associated herpesvirus (KSHV) intronless mRNAs from the nucleus, the KSHV ORF57 protein recruits hTREX onto viral intronless mRNAs allowing access to the TAP-mediated export pathway.

View Article and Find Full Text PDF

The size, composition and functioning of the spinal cord is likely to depend on appropriate numbers of progenitor and differentiated cells of a particular class, but little is known about how cell numbers are controlled in specific cell cohorts along the dorsoventral axis of the neural tube. Here, we show that FatJ cadherin, identified in a large-scale RNA interference (RNAi) screen of cadherin genes expressed in the neural tube, is localised to progenitors in intermediate regions of the neural tube. Loss of function of FatJ promotes an increase in dp4-vp1 progenitors and a concomitant increase in differentiated Lim1(+)/Lim2(+) neurons.

View Article and Find Full Text PDF

The herpesvirus proteins HSV-1 ICP27 and HVS ORF57 promote viral mRNA export by utilizing the cellular mRNA export machinery. This function is triggered by binding to proteins of the transcription-export (TREX) complex, in particular to REF/Aly which directs viral mRNA to the TAP/NFX1 pathway and, subsequently, to the nuclear pore for export to the cytoplasm. Here we have determined the structure of the REF-ICP27 interaction interface at atomic-resolution and provided a detailed comparison of the binding interfaces between ICP27, ORF57 and REF using solution-state NMR.

View Article and Find Full Text PDF