Publications by authors named "Steven G Ojemann"

Background And Purpose: Neuromodulation of the centromedian nucleus (CM) of the thalamus has shown promise in treating refractory epilepsy, particularly for idiopathic generalized epilepsy and Lennox-Gastaut syndrome. However, precise targeting of CM remains challenging. The combination of deep learning reconstruction (DLR) and fast gray matter acquisition T1 inversion recovery (FGATIR) offers potential improvements in visualization of CM for deep brain stimulation (DBS) targeting.

View Article and Find Full Text PDF

Transcranial MR-guided high-intensity focused ultrasound (HIFUS) ablation is a therapeutic modality for essential tremor and tremor-dominant Parkinson's disease. Skull marrow lesions may occur post-treatment and mimic metastatic disease. In this retrospective study of 10 patients receiving a delayed post-treatment MRI, four patients developed skull lesions.

View Article and Find Full Text PDF

Introduction: Deep brain stimulation (DBS) and responsive neural stimulation (RNS) are effective for patients with pharmacoresistant epilepsy. Similar outcomes and increasingly convergent indications mean the choice of device may come down to other factors. Common to implanted therapeutic devices, wound-associated adverse outcomes are among the more common complications for these two procedures.

View Article and Find Full Text PDF

Introduction: Mounting evidence suggests the efficacy of neuromodulation for epilepsy is mediated by network remodeling and neural state. Epilepsy network related pathophysiology has been associated with variation in the aperiodic exponent, which describes the inverse relationship between frequency and power and has been linked to synaptic-level processes. This study sought to assess relationships between periodic and aperiodic activity, disease state, and responsive stimulation.

View Article and Find Full Text PDF

Background: Neuromodulation of the centromedian nucleus (CM) has shown beneficial effects on seizure frequency. The effects of stimulation vary by location within the CM region, and during closed-loop stimulation, different contacts have been used for recording and stimulation. The spatial relationships between anatomy, stimulation efficacy, and recording utility remain unclear.

View Article and Find Full Text PDF

Background And Objectives: Stereotactic procedures are used to manage a diverse set of patients across a variety of clinical contexts. The stereotactic devices and software used in these procedures vary between surgeons, but the fundamental principles that constitute safe and accurate execution do not. The aim of this work is to describe these principles to equip readers with a generalizable knowledge base to execute and understand stereotactic procedures.

View Article and Find Full Text PDF

Introduction: Anterior nucleus of the thalamus (ANT) deep brain stimulation (DBS) is an increasingly promising treatment option for refractory epilepsy. Optimal therapeutic benefit has been associated with stimulation at the junction of ANT and the mammillothalamic tract (mtt), but electrophysiologic markers of this target are lacking. The present study examined microelectrode recordings (MER) during DBS to identify unique electrophysiologic characteristics of ANT and the ANT-mtt junction.

View Article and Find Full Text PDF

In genetic studies of cerebrovascular diseases, the optimal vessels to use as controls remain unclear. Our goal is to compare the transcriptomic profiles among 3 different types of control vessels: superficial temporal artery (STA), middle cerebral arteries (MCA), and arteries from the circle of Willis obtained from autopsies (AU). We examined the transcriptomic profiles of STA, MCA, and AU using RNAseq.

View Article and Find Full Text PDF

Background: Technological advancements in deep brain stimulation (DBS) require methodological changes in programming. Fractionalization poses significant practical challenges for the most common approach for assessing DBS efficacy, monopolar review (MR).

Objectives: Two DBS programming methods: MR and fixed parameter vertical and horizontal fractionalization (FPF) were compared.

View Article and Find Full Text PDF

Background And Objectives: While somatic mutations have been well-studied in cancer, their roles in other complex traits are much less understood. Our goal is to identify somatic variants that may contribute to the formation of saccular cerebral aneurysms.

Methods: We performed whole-exome sequencing on aneurysm tissues and paired peripheral blood.

View Article and Find Full Text PDF

The expanding application of deep brain stimulation (DBS) therapy both drives and is informed by our growing understanding of disease pathophysiology and innovations in neurosurgical care. Neurophysiological targeting, a mainstay for identifying optimal, motor responsive targets, has remained largely unchanged for decades. Utilizing deep learning-based computer vision and related computational methods, we developed an effective and simple intraoperative approach to objectively correlate neural signals with movements, automating and standardizing the otherwise manual and subjective process of identifying ideal DBS electrode placements.

View Article and Find Full Text PDF

Optimal placement of deep brain stimulation (DBS) therapy for treating movement disorders routinely relies on intraoperative motor testing for target determination. However, in current practice, motor testing relies on subjective interpretation and correlation of motor and neural information. Recent advances in computer vision could improve assessment accuracy.

View Article and Find Full Text PDF

Advanced Parkinson's disease (PD) is characterized by increasingly debilitating impaired movements that include motor fluctuations and dyskinesias. At this stage of the disease, pharmacological management can result in unsatisfactory clinical benefits and increase the occurrence of adverse effects, leading to the consideration of advanced therapies. The scope of this review is to provide an overview of currently available therapies for advanced PD, specifically levodopa-carbidopa intestinal gel, continuous subcutaneous apomorphine infusion, radiofrequency ablation, stereotactic radiosurgery, MRI-guided focused ultrasound, and deep brain stimulation.

View Article and Find Full Text PDF

The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus.

View Article and Find Full Text PDF

Objective: The severity of motor symptoms in Parkinson's disease (PD) depends on environmental conditions. For example, the presence of external patterns such as a rhythmic tone can attenuate bradykinetic impairments. However, the neural mechanisms for this context-dependent attenuation (e.

View Article and Find Full Text PDF

Objective: To determine how neuropsychiatric comorbidity, modulatory indication, demographics, and other characteristics affect inpatient deep brain stimulation (DBS) outcomes.

Methods: This is a retrospective study of 45 months' worth of data from the National Inpatient Sample. Patients were aged ≥ 18 years old and underwent DBS for Parkinson Disease (PD), essential tremor (ET), general dystonia and related disorders, other movement disorder (non-PD/ET), or obsessive-compulsive disorder (OCD) at a US hospital.

View Article and Find Full Text PDF

Introduction: Deep brain stimulation of the zona incerta is effective at treating tremor and other forms of parkinsonism. However, the structure is not well visualized with standard MRI protocols making direct surgical targeting unfeasible and contributing to inconsistent clinical outcomes. In this study, we applied coronal gradient echo MRI to directly visualize the rostral zona incerta in Parkinson's disease patients to improve targeting for deep brain stimulation.

View Article and Find Full Text PDF

Electrical stimulation mapping (ESM) using stereoelectroencephalography (SEEG) is an essential component in the workup of surgical epilepsy. Since the initial application of ESM in the mid-1960s, it remains unparalleled in defining eloquent brain areas and delimiting seizure foci for the purposes of surgical planning. Here, we briefly review the current state of SEEG stimulation, with a focus on the techniques used for identifying the epileptogenic zone and eloquent cortex.

View Article and Find Full Text PDF

Objective: The success of deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) depends on accurately placing the electrode into the GPi motor territory. Direct targeting can be difficult as GPi laminar borders are not always clearly identifiable on MRI. Here, we report a method for using the putamen (PUT) as a surrogate anatomical marker to target the GPi.

View Article and Find Full Text PDF

We report the 12-month clinical and imaging data on the effects of bilateral delivery of the glutamic acid decarboxylase gene into the subthalamic nuclei (STN) of advanced Parkinson's disease (PD) patients. 45 PD patients were enrolled in a 6-month double-blind randomized trial of bilateral AAV2- delivery into the STN compared with sham surgery and were followed for 12 months in open-label fashion. Subjects were assessed with clinical outcome measures and F-fluorodeoxyglucose (FDG) PET imaging.

View Article and Find Full Text PDF

Background/aims: Laser interstitial thermal therapy (LITT) has become an alternative to open-resective surgery for refractory mesial temporal lobe epilepsy (MTLE). Occurrence of visual field defects (VFDs) following open surgery for MTLE is reported at 52-100%. We examined the rate of VFDs following LITT for amygdalohippocampectomy (AHE) and correlated the occurrence of VFDs with damage to the optic radiations, assessed by diffusion tensor tractography (DTI).

View Article and Find Full Text PDF

Background: Gene transfer of glutamic acid decarboxylase (GAD) and other methods that modulate production of GABA in the subthalamic nucleus improve basal ganglia function in parkinsonism in animal models. We aimed to assess the effect of bilateral delivery of AAV2-GAD in the subthalamic nucleus compared with sham surgery in patients with advanced Parkinson's disease.

Methods: Patients aged 30-75 years who had progressive levodopa-responsive Parkinson's disease and an overnight off-medication unified Parkinson's disease rating scale (UPDRS) motor score of 25 or more were enrolled into this double-blind, phase 2, randomised controlled trial, which took place at seven centres in the USA between Nov 17, 2008, and May 11, 2010.

View Article and Find Full Text PDF

Discontinuity in the silicone insulation over an electrode of a left vagus nerve stimulator (VNS) allowed the aberrant leak of current to the phrenic nerve and other structures. This resulted in ipsilateral diaphragmatic dysfunction, inability to vocalize, and severe radiating pain into the jaw and upper incisor for the duration of each stimulation. The device was explanted and a new device was implanted.

View Article and Find Full Text PDF