Context: Establishing diet-disease associations requires reliable assessment of dietary intake. With the rapid advancement of metabolomics, its use in identifying objective biomarkers of dietary exposure has substantially increased.
Objective: The aim of our review was to systematically combine all observational studies linking dietary intake patterns with metabolomic profiles of human biospecimens.
Objectives: Dietary strategies to promote successful aging are divergent. Higher-protein diets are recommended to preserve skeletal muscle mass and physical function. Conversely, increased B-vitamin intake, supporting one-carbon (1C) metabolism, reduces the risk of cognitive decline and cardiovascular disease.
View Article and Find Full Text PDFScope: B vitamers are co-enzymes involved in key physiological processes including energy production, one-carbon, and macronutrient metabolism. Studies profiling B vitamers simultaneously in parent-child dyads are scarce. Profiling B vitamers in parent-child dyads enables an insightful determination of gene-environment contributions to their circulating concentrations.
View Article and Find Full Text PDFAmino acid (AA) concentrations are influenced by both exogenous (e.g. diet, lifestyle) and endogenous factors (e.
View Article and Find Full Text PDFBackground: Trimethylamine N-oxide (TMAO) is a diet- and microbiome-derived metabolite and a proposed biomarker of adverse cardiometabolic outcomes. TMAO studies have mainly been conducted in individuals with cardiometabolic disease, and studies in population-derived samples are limited.
Objective: We aimed to investigate the associations between plasma TMAO concentrations and its precursors [carnitine, choline, betaine, and dimethylglycine (DMG)] with metabolic syndrome (MetS) scores, preclinical cardiovascular phenotypes, and inflammatory biomarkers (i.
Background: Trimethylamine N-oxide (TMAO) is a microbiome- and diet-derived metabolite implicated in adverse cardiovascular outcomes. To date, studies of plasma TMAO concentrations have largely focused on individuals with metabolic disease. As such, data on TMAO concentrations in population settings and parent-child dyads are lacking.
View Article and Find Full Text PDFAmino acids (AAs) and one-carbon (1-C) metabolism compounds are involved in a range of key metabolic pathways, and mediate numerous health and disease processes in the human body. Previous assays have quantified a limited selection of these compounds and typically require extensive manual handling. Here, we describe the robotic automation of an analytical method for the simultaneous quantification of 37 1-C metabolites, amino acids, and precursors using reversed-phase ultra-high-pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS-MS).
View Article and Find Full Text PDFDiet and lifestyle are vital to population health, but their true contribution is difficult to quantify using traditional methods. Nutrient-health relations are typically based on epidemiological associations that are assessed at the population level, traditionally using self-reported dietary and lifestyle data. Unfortunately, such measures are inherently inaccurate.
View Article and Find Full Text PDFEpidemiological studies have consistently demonstrated that environmental exposures in early life are associated with later-life health status and disease susceptibility. Epigenetic modifications, such as DNA methylation, have been suggested as potential mechanisms linking the intrauterine environment with offspring health status. The present systematic review compiles peer-reviewed randomized controlled trials assessing the impact of maternal nutritional interventions on DNA methylation patterns of the offspring.
View Article and Find Full Text PDF