The viral safety of biological products is ensured by tests throughout the production chain, and, for certain products, by steps in the manufacturing process enabling the elimination or inactivation of viruses. Current testing programs include sample inoculation in animals and embryonic eggs. Following the 3Rs principles of replacement, reduction, and refinement of animal-use methods, such techniques are intended to be replaced not only for ethical reasons but also because of their inherent technical limitations, their long turnaround times, and their limits in virus detection.
View Article and Find Full Text PDFDespite diagnostic advances in microbiology, the etiology of neutropenic fever remains elusive in most cases. In this study, we evaluated the utility of a metagenomic shotgun sequencing based assay for detection of bacteria and viruses in blood samples of patients with febrile neutropenia. We prospectively enrolled 20 acute leukemia patients and obtained blood from these patients at three time points: 1) anytime from onset of neutropenia until before development of neutropenic fever, 2) within 24 hours of onset of neutropenic fever, 3) 5-7 days after onset of neutropenic fever.
View Article and Find Full Text PDFPLoS Comput Biol
December 2021
[This corrects the article DOI: 10.1371/journal.pcbi.
View Article and Find Full Text PDFMicrob Genom
October 2020
Under the same selection pressures, two genetically divergent populations may evolve in parallel toward the same adaptive solutions. Here, we hypothesized that magnetotaxis (i.e.
View Article and Find Full Text PDFBiologicals
May 2020
Mycoplasma contamination threatens both the safety of biologics produced in cell substrates as well as the quality of scientific results based on cell-culture observations. Methods currently used to detect contamination of cells include culture, enzymatic activity, immunofluorescence and PCR but suffer from some limitations. High throughput sequencing (HTS) can be used to identify microbes like mycoplasmas in biologics since it enables an unbiased approach to detection without the need to design specific primers to pre-amplify target sequences but it does not enable the confirmation of microbial infection since this could reflect carryover of inert sequences.
View Article and Find Full Text PDFPLoS Comput Biol
March 2020
The use of comparative genomics for functional, evolutionary, and epidemiological studies requires methods to classify gene families in terms of occurrence in a given species. These methods usually lack multivariate statistical models to infer the partitions and the optimal number of classes and don't account for genome organization. We introduce a graph structure to model pangenomes in which nodes represent gene families and edges represent genomic neighborhood.
View Article and Find Full Text PDFOver millions of years, changes have occurred in regulatory circuitries in response to genome reorganization and/or persistent changes in environmental conditions. How bacteria optimize regulatory circuitries is crucial to understand bacterial adaptation. Here, we analyzed the experimental evolution of the plant pathogen into legume symbionts after the transfer of a natural plasmid encoding the essential mutualistic genes.
View Article and Find Full Text PDFmSphere
June 2019
The use of high-throughput sequencing (HTS) to identify viruses in biologicals differs from current molecular approaches, since its use enables an unbiased approach to detection without the need to design specific primers to preamplify target sequences. Its broad range of detection and analytical sensitivity make it an important tool to ensure that biologicals are free from adventitious viruses. Similar to other molecular methods, however, identification of viral sequences in cells by HTS does not prove viral infection, since this could reflect carryover of inert viral sequences from reagents or other sources or the presence of transcriptionally inactive cellular sequences.
View Article and Find Full Text PDFWe previously identified an operon involved in an arginine deiminase (ADI) pathway ( operon) on a CTX-M-producing plasmid from an O102-ST405 strain of As the ADI pathway was shown to be involved in the virulence of various Gram-positive bacteria, we tested whether the ADI pathway could be involved in the epidemiological success of extended-spectrum-β-lactamase (ESBL)-producing strains. We studied two collections of human isolated in France ( = 493) and England ( = 1,509) and show that the prevalence of the operon (i) is higher in ESBL-producing strains (12.1%) than in nonproducers (2.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2019
Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS3257, which forms efficient symbioses with cowpea, peanut, or groundnut. These genomic data will be useful to identify genes associated with symbiotic performance and host compatibility on several legumes, including Aeschynomene species, with which a Nod-independent type III secretion system (T3SS)-dependent symbiosis can be established.
View Article and Find Full Text PDFClémence Genthon and Céline Lopez-Roques, who performed sequencing, were inadvertently omitted from the author list. This has now been corrected in the PDF and HTML versions of the Article.
View Article and Find Full Text PDFMicrob Genom
September 2018
To understand the evolutionary dynamics of extended-spectrum β-lactamase (ESBL)-encoding genes in Escherichia coli, we undertook a comparative genomic analysis of 116 whole plasmid sequences of human or animal origin isolated over a period spanning before and after the use of third-generation cephalosporins (3GCs) using a gene-sharing network approach. The plasmids included 82 conjugative, 22 mobilizable and 9 non-transferable plasmids and 3 P-like bacteriophages. ESBL-encoding genes were found on 64 conjugative, 6 mobilizable, 2 non-transferable plasmids and 2 P1-like bacteriophages, indicating that these last three types of mobile elements also play a role, albeit modest, in the diffusion of the ESBLs.
View Article and Find Full Text PDFEcological and evolutionary processes involved in magnetotactic bacteria (MTB) adaptation to their environment have been a matter of debate for many years. Ongoing efforts for their characterization are progressively contributing to understand these processes, including the genetic and molecular mechanisms responsible for biomineralization. Despite numerous culture-independent MTB characterizations, essentially within the Proteobacteria phylum, only few species have been isolated in culture because of their complex growth conditions.
View Article and Find Full Text PDFNod factors (NF) were assumed to be indispensable for the establishment of a rhizobium-legume symbiosis until the discovery that certain Bradyrhizobium strains interacting with certain Aeschynomene species lack the canonical nodABC genes required for their synthesis. So far, the molecular dialogue between Aeschynomene and its symbionts remains an open question. Here we report a time course transcriptional analysis of Aeschynomene evenia in response to inoculation with Bradyrhizobium ORS278.
View Article and Find Full Text PDFThe emergence of symbiotic interactions has been studied using population genomics in nature and experimental evolution in the laboratory, but the parallels between these processes remain unknown. Here we compare the emergence of rhizobia after the horizontal transfer of a symbiotic plasmid in natural populations of Cupriavidus taiwanensis, over 10 MY ago, with the experimental evolution of symbiotic Ralstonia solanacearum for a few hundred generations. In spite of major differences in terms of time span, environment, genetic background, and phenotypic achievement, both processes resulted in rapid genetic diversification dominated by purifying selection.
View Article and Find Full Text PDFBackground: The SOS response is an almost ubiquitous response of cells to genotoxic stresses. The full complement of genes in the SOS regulon for Vibrio species has only been addressed through bioinformatic analyses predicting LexA binding box consensus and in vitro validation. Here, we perform whole transcriptome sequencing from Vibrio cholerae treated with mitomycin C as an SOS inducer to characterize the SOS regulon and other pathways affected by this treatment.
View Article and Find Full Text PDFThe objective of this work was to investigate the nutritional potential of Lactobacillus plantarum A6 in a food matrix using next generation sequencing. To this end, we characterized the genome of the A6 strain for a complete overview of its potential. We then compared its transcriptome when grown in a food matrix made from pearl millet to and its transcriptome when cultivated in a laboratory medium.
View Article and Find Full Text PDFThe overwhelming list of new bacterial genomes becoming available on a daily basis makes accurate genome annotation an essential step that ultimately determines the relevance of thousands of genomes stored in public databanks. The MicroScope platform (http://www.genoscope.
View Article and Find Full Text PDFFront Microbiol
September 2017
Dam, the most described bacterial DNA-methyltransferase, is widespread in gamma-proteobacteria. Dam DNA methylation can play a role in various genes expression and is involved in pathogenicity of several bacterial species. The purpose of this study was to determine the role played by the ortholog identified in the entomopathogenic bacterium .
View Article and Find Full Text PDFBacterial adaptation to growth with toxic halogenated chemicals was explored in the context of methylotrophic metabolism of , by comparing strains CM4 and DM4, which show robust growth with chloromethane and dichloromethane, respectively. Dehalogenation of chlorinated methanes initiates growth-supporting degradation, with intracellular release of protons and chloride ions in both cases. The core, variable and strain-specific genomes of strains CM4 and DM4 were defined by comparison with genomes of non-dechlorinating strains.
View Article and Find Full Text PDFBackground: Enterohemorrhagic Escherichia coli (EHEC) are zoonotic agents associated with outbreaks worldwide. Growth of EHEC strains in ground beef could be inhibited by background microbiota that is present initially at levels greater than that of the pathogen E. coli.
View Article and Find Full Text PDFHere, we report the complete genome sequence of sp. strain ORS285, which is able to nodulate legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes.
View Article and Find Full Text PDFThe extreme radiation resistance of Deinococcus bacteria requires the radiation-stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation-induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo-IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively.
View Article and Find Full Text PDF