Publications by authors named "Stavros G Demos"

Sapphire (AlO) is a commonly used dielectric material with many applications in lasers and optical systems. Owing to its high resistivity to laser induced damage, it is particularly suitable for use in high power laser systems. This work focuses on developing techniques to characterize material modifications in sapphire.

View Article and Find Full Text PDF

Glancing-angle deposition (GLAD) produces nanostructured silica, showcasing form birefringence, an attractive alternative to traditionally used crystalline materials for polarization control. This work aims to enhance the understanding of its internal structure and associated defects in its native form and after laser processing. Our observations show, for the first time, that the GLAD silica exhibits a unique Raman signature that converges to a typical silica spectrum following laser melting.

View Article and Find Full Text PDF

The laser-damage performance of HfO/SiO and AlO/SiO mirrors was investigated at a laser wavelength of 351 nm with nanosecond pulse durations. A method was developed to quantify the laser-induced damage-growth threshold under conditions relevant to high-repetition-rate, large-aperture laser systems. The results suggest that the damage-growth performance cannot be inferred from the corresponding damage-initiation threshold that is commonly used to evaluate the performance of optical materials.

View Article and Find Full Text PDF

Pulse-compression gratings for high-power, short-pulse laser systems are exposed to high electric fields that are further enhanced locally due to their 2D nanostructured surface. This makes them vulnerable to laser-induced damage. The present work considers the effect on electric-field modulation caused by an array of commonly found inadvertent flaws in gratings including fabrication defects, contamination particles, and laser-induced-damage initiation.

View Article and Find Full Text PDF

Monolayers containing subnanometer striations of silica and hafnia to form composite materials at varying ratios are explored as a method to develop high-index dielectric layers with increased laser-induced-damage thresholds (LIDTs). These layers can then be used in multilayer dielectric coatings for short-pulse, high-peak-power laser applications, particularly in regions of the highest electric-field intensity. Fabrication is achieved by means of exposure to two different evaporant vapor plumes, where local exposure to each plume is controlled via shielding to prevent simultaneous exposure.

View Article and Find Full Text PDF

The laser-damage performance characteristics of potassium dihydrogen phosphate (KDP) samples under exposure to a distinctive broadband incoherent laser pulse are investigated. A laser system providing such pulses is intended to explore improved energy-coupling efficiency on the target in direct-drive inertial confinement fusion experiments and provides incoherent bandwidths as large as 10 THz in a nanosecond pulse. A consequence of this bandwidth is very rapid fluctuations in intensity capable of reaching maxima much larger than the average intensity within the pulse.

View Article and Find Full Text PDF

Three organic monolayers coatings were developed and tested for their effectiveness to increase cleaning efficiency of attached microscale particles by air flows. The experiments were performed using silica substrates coated with these organic thin films and subsequently exposed to stainless-steel and silica microparticles as a model of contamination. Laser-induced-damage tests confirmed that the coatings do not affect the laser-induced-damage threshold values.

View Article and Find Full Text PDF

Potassium dihydrogen phosphate (KDP) and its deuterated analog (DKDP) are unique nonlinear optical materials for high power laser systems. They are used widely for frequency conversion and polarization control by virtue of the ability to grow optical-quality crystals at apertures suitable for fusion-class laser systems. Existing methods for freeform figuring of KDP/DKDP optics do not produce surfaces with sufficient laser-induced-damage thresholds (LIDT's) for operation in the ultraviolet portion of high-peak-power laser systems.

View Article and Find Full Text PDF

Contamination of pulse compression gratings during the manufacturing process is known to give rise to reduced laser damage performance and represents an issue that has not yet been adequately resolved. The present work demonstrates that the currently used etching methods introduce carbon contamination inside the etched region extending to a 50- to 80-nm layer below the surface. This study was executed using custom samples prepared in both, a laboratory setting and by established commercial vendors, showing results that are very similar.

View Article and Find Full Text PDF

Interactions of liquid crystals (LC's) with polarized light have been studied widely and have spawned numerous device applications, including the fabrication of optical elements for high-power and large-aperture laser systems. Currently, little is known about both the effect of incident polarization state on laser-induced-damage threshold (LIDT) and laser-induced functional threshold (LIFT) behavior at sub-LIDT fluences under multipulse irradiation conditions. This work reports on the first study of the nanosecond-pulsed LIDT's dependence on incident polarization for several optical devices employing oriented nematic and chiral-nematic LC's oriented by surface alignment layers.

View Article and Find Full Text PDF

The physical mechanisms and ensuing material modification associated with laser-induced damage in multilayer dielectric high reflectors is investigated for pulses between 0.6 and 100 ps. We explore low-loss multilayer dielectric SiO/HfO mirrors which are commonly employed in petawatt-class laser systems.

View Article and Find Full Text PDF

Microscopy with ultraviolet surface excitation (MUSE) is investigated as a means to enhance curricula and education in the life sciences based on simplicity of use, the incorporation of inexpensive hardware, and the simplest methods of tissue preparation. Ultraviolet excitation in effect replaces tissue sectioning because it penetrates only a few micrometers below the tissue surface at the single cell level, preventing the generation of out-of-focus light. Although tissue autofluorescence may be used, image quality and content can be enhanced by a brief immersion in a solution of nontoxic fluorescent dyes that selectively highlight different cellular compartments.

View Article and Find Full Text PDF

Histological examination of tissues is central to the diagnosis and management of neoplasms and many other diseases and is a foundational technique for preclinical and basic research. However, commonly used bright-field microscopy requires prior preparation of micrometre-thick tissue sections mounted on glass slides-a process that can require hours or days, contributes to cost and delays access to critical information. Here, we introduce a simple, non-destructive slide-free technique that, within minutes, provides high-resolution diagnostic histological images resembling those obtained from conventional haematoxylin and eosin histology.

View Article and Find Full Text PDF

Functional changes in rat kidneys during the induced ischemic injury and recovery phases were explored using multimodal autofluorescence and light scattering imaging. The aim is to evaluate the use of noncontact optical signatures for rapid assessment of tissue function and viability. Specifically, autofluorescence images were acquired in vivo under 355, 325, and 266 nm illumination while light scattering images were collected at the excitation wavelengths as well as using relatively narrowband light centered at 500 nm.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines laser damage mechanisms in two conductive wide-bandgap semiconductor films: indium tin oxide (ITO) and silicon doped GaN (Si:GaN).
  • The experiments utilized various analytical techniques and revealed that ITO experienced thermal degradation while Si:GaN showed localized eruptions at interfaces when exposed to nanosecond laser pulses.
  • The findings suggest that damage in ITO is linked to free carrier absorption, whereas carbon complexes may play a role in the damage process of Si:GaN.
View Article and Find Full Text PDF

The interaction of nanosecond laser pulses at 1064- and 355-nm with micro-scale, nominally spherical metallic particles is investigated in order to elucidate the governing interaction mechanisms as a function of material and laser parameters. The experimental model used involves the irradiation of metal particles located on the surface of transparent plates combined with time-resolved imaging capable of capturing the dynamics of particle ejection, plume formation and expansion along with the kinetics of the dispersed material from the liquefied layer of the particle. The mechanisms investigated in this work are informative and relevant across a multitude of materials and irradiation geometries suitable for the description of a wide range of specific applications.

View Article and Find Full Text PDF

High peak power laser systems are vulnerable to performance degradation due to particulate contamination on optical surfaces. In this work, we show using model contaminant particles that their optical properties decisively determine the nature of the optical damage. Borosilicate particles with low intrinsic optical absorption undergo ablation initiating in their sub-surface, leading to brittle fragmentation, distributed plasma formation, material dispersal and ultimately can lead to micro-fractures in the substrate optical surface.

View Article and Find Full Text PDF

Time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observed to cool from >24,000 to ~15,000 K over ~220 ns as τ(-0.28), consistent with radiative losses and adiabatic gas expansion of a relatively free plasma.

View Article and Find Full Text PDF

Many transition metal complexes exhibit infrared or visible optical absorption arising from d-d transitions that are the key to functionality in technological applications and biological processes. The observed spectral characteristics of the absorption spectra depend on several underlying physical parameters whose relative contributions are still not fully understood. Although conventional arguments based on ligand-field theory can be invoked to rationalize the peak absorption energy, they cannot describe the detailed features of the observed spectral profile such as the spectral width and shape, or unexpected correlations between the oscillator strength and absorption peak position.

View Article and Find Full Text PDF

Fe-doped lithium sodium silicate glasses codoped with Sn and C to promote the Fe²⁺ redox state are investigated under simultaneous excitation at the first and third harmonics of a nanosecond Nd:YAG laser. The aim is to evaluate critical parameters associated with the potential use of this material as an optical filter that transmits the third harmonic but blocks the fundamental frequency. Estimations of the excited-state absorption coefficient and photobleaching (reduction of absorption at the fundamental) are provided.

View Article and Find Full Text PDF

We investigate defects forming in Ce³⁺-doped fused silica samples following exposure to nanosecond ultraviolet laser pulses and their relaxation as a function of time and exposure to low intensity light at different wavelengths. A subset of these defects are responsible for inducing absorption in the visible and near infrared spectral range, which is of critical importance for the use of this material as ultraviolet light absorbing filter in high power laser systems. The dependence of the induced absorption as a function of laser fluence and methods to most efficiently mitigate this effect are presented.

View Article and Find Full Text PDF

We study the dynamics of energy deposition and subsequent material response associated with exit surface damage growth in fused silica using a time resolved microscope system. This system enables acquisition of two transient images per damage event with temporal resolution of 180 ps and spatial resolution on the order of 1 µm. The experimental results address important issues in laser damage growth that include: a) the specific structural features within a damage site where plasma formation initiates; b) the subsequent growth of the plasma regions; c) the formation and expansion of radial and circumferential cracks; d) the kinetics and duration of material ejection; e) the characteristics of the generated shockwave.

View Article and Find Full Text PDF

The self-focusing characteristic of 355 nm, 3.3 ns pulses propagating through phosphate glass samples is found to significantly change during repeated exposure. The results indicate this change is related to the formation of color centers in the material as well as the generation of a transient defect population during exposure to the laser pulses.

View Article and Find Full Text PDF

The light emission produced near the surface of fused silica following laser-induced breakdown on the exit surface was spatially and spectrally resolved. This signal is in part generated by ejected particles while traveling outside the hot ionized region. The thermal emission produced by the particles can be separated from the plasma emission near the surface and its spectral characteristics provide information on the temperature of the particles after ejection from the surface.

View Article and Find Full Text PDF

A prototype instrument developed to provide simultaneously ordinary visual endoscopy together with near infrared (NIR) autofluorescence imaging via parallel image acquisition is demonstrated. The two images are recorded concurrently and the instrument interfaces with any ordinary endoscope. Preliminary results of a pilot study focused on imaging of bladder tumors in vivo using this instrumentation are presented.

View Article and Find Full Text PDF