Chronic infection with hepatitis B virus (HBV) can lead to formation of abnormal nodular structures within the liver. To address how changes in liver anatomy affect overall virus-host dynamics, we developed within-host ordinary differential equation models of two-patch hepatitis B infection, one that assumes irreversible and one that assumes reversible movement between nodular structures. We investigated the models analytically and numerically, and determined the contribution of patch susceptibility, immune responses, and virus movement on within-patch and whole-liver virus dynamics.
View Article and Find Full Text PDFAchieving durable antibody-mediated protection remains critical in vaccine develop-ment, particularly for viral diseases like COVID-19 and HIV. We discuss factors influencing an-tibody durability, highlighting the role of long-lived plasma cells (LLPCs) in the bone marrow, which are essential for sustained antibody production over many years. The frequencies and prop-erties of bone marrow LLPC are critical determinants of the broad spectrum of antibody durability for different vaccines.
View Article and Find Full Text PDFMalnutrition alters metabolism and immunity, affecting one's ability to fight infections and influencing clinical outcomes. To quantify differences in infection dynamics among groups of different nutrition statuses and challenged with different viruses, we developed within-host mathematical models of acute infections and fitted them to data from mice fed either a high-fat overnutrition diet, a low-protein undernutrition diet, or a lean control diet and infected with either Mayaro, Ross River or chikungunya. In addition to finding virus-specific host-virus dynamics, model analyses showed decreased infected cell removal rates in undernourished infected mice compared to overnourished infected mice, regardless of the pathogen.
View Article and Find Full Text PDFMath Biosci
September 2025
Understanding the mechanisms responsible for different clinical outcomes following hepatitis B infection requires a systems investigation of dynamical interactions between the virus and the immune system. To help elucidate mechanisms of protection and those responsible from transition from acute to chronic disease, we developed a deterministic mathematical model of hepatitis B infection that accounts for cytotoxic immune responses resulting in infected cell death, non-cytotoxic immune responses resulting in infected cell cure and protective immunity from reinfection, and cell proliferation. We analyzed the model and presented outcomes based on three important disease markers: the basic reproduction number R, the infected cells death rate δ (describing the effect of cytotoxic immune responses), and the liver carrying capacity K (describing the liver susceptibility to infection).
View Article and Find Full Text PDFCommun Med (Lond)
May 2025
Background: The prolonged viral shedding from the gastrointestinal tract is well documented for numerous pathogens, including SARS-CoV-2. However, the impact of prolonged viral shedding on epidemiological inferences using wastewater data is not yet fully understood.
Methods: To gain a better understanding of this phenomenon at the population level, we extended a wastewater-based modeling framework that integrates viral shedding dynamics, viral load data in wastewater, case report data, and an epidemic model.
Math Biosci Eng
October 2024
Uncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we used four mathematical models of influenza A infection with increased degrees of biological realism.
View Article and Find Full Text PDFVaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) results in transient antibody response against the spike protein. The individual immune status at the time of vaccination influences the response. Using mathematical models of antibody decay, we determined the dynamics of serum immunoglobulin G (IgG) and serum immunoglobulin A (IgA) over time.
View Article and Find Full Text PDFGeneration of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection.
View Article and Find Full Text PDFIn-host models have been essential for understanding the dynamics of virus infection inside an infected individual. When used together with biological data, they provide insight into viral life cycle, intracellular and cellular virus-host interactions, and the role, efficacy, and mode of action of therapeutics. In this review, we present the standard model of virus dynamics and highlight situations where added model complexity accounting for intracellular processes is needed.
View Article and Find Full Text PDFUncertainty in parameter estimates from fitting within-host models to empirical data limits the model's ability to uncover mechanisms of infection, disease progression, and to guide pharmaceutical interventions. Understanding the effect of model structure and data availability on model predictions is important for informing model development and experimental design. To address sources of uncertainty in parameter estimation, we use four mathematical models of influenza A infection with increased degrees of biological realism.
View Article and Find Full Text PDFBull Math Biol
April 2024
Analyzing the impact of the adaptive immune response during acute hepatitis B virus (HBV) infection is essential for understanding disease progression and control. Here we developed mathematical models of HBV infection which either lack terms for adaptive immune responses, or assume adaptive immune responses in the form of cytolytic immune killing, non-cytolytic immune cure, or non-cytolytic-mediated block of viral production. We validated the model that does not include immune responses against temporal serum hepatitis B DNA (sHBV) and temporal serum hepatitis B surface-antigen (HBsAg) experimental data from mice engrafted with human hepatocytes (HEP).
View Article and Find Full Text PDFAryl hydrocarbon receptor (AhR) responds to endogenous and exogenous ligands as a cytosolic receptor, transcription factor, and E3 ubiquitin ligase. Several studies support an anti-inflammatory effect of AhR activation. However, exposure to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during early stages of development results in an autoimmune phenotype and exacerbates lupus.
View Article and Find Full Text PDFUnderstanding the epidemiology of emerging pathogens, such as Usutu virus (USUV) infections, requires systems investigation at each scale involved in the host-virus transmission cycle, from individual bird infections, to bird-to-vector transmissions, and to USUV incidence in bird and vector populations. For new pathogens field data are sparse, and predictions can be aided by the use of laboratory-type inoculation and transmission experiments combined with dynamical mathematical modelling. In this study, we investigated the dynamics of two strains of USUV by constructing mathematical models for the within-host scale, bird-to-vector transmission scale and vector-borne epidemiological scale.
View Article and Find Full Text PDFWastewater surveillance has been widely used to track and estimate SARS-CoV-2 incidence. While both infectious and recovered individuals shed virus into wastewater, epidemiological inferences using wastewater often only consider the viral contribution from the former group. Yet, the persistent shedding in the latter group could confound wastewater-based epidemiological inference, especially during the late stage of an outbreak when the recovered population outnumbers the infectious population.
View Article and Find Full Text PDFDetermining accurate estimates for the characteristics of the severe acute respiratory syndrome coronavirus 2 in the upper and lower respiratory tracts, by fitting mathematical models to data, is made difficult by the lack of measurements early in the infection. To determine the sensitivity of the parameter estimates to the noise in the data, we developed a novel two-patch within-host mathematical model that considered the infection of both respiratory tracts and assumed that the viral load in the lower respiratory tract decays in a density dependent manner and investigated its ability to match population level data. We proposed several approaches that can improve practical identifiability of parameters, including an optimal experimental approach, and found that availability of viral data early in the infection is of essence for improving the accuracy of the estimates.
View Article and Find Full Text PDFPLoS Comput Biol
August 2022
The relationship between transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the amount of virus present in the proximity of a susceptible host is not understood. Here, we developed a within-host and aerosol mathematical model and used it to determine the relationship between viral kinetics in the upper respiratory track, viral kinetics in the aerosols, and new transmissions in golden hamsters challenged with SARS-CoV-2. We determined that infectious virus shedding early in infection correlates with transmission events, shedding of infectious virus diminishes late in the infection, and high viral RNA levels late in the infection are a poor indicator of transmission.
View Article and Find Full Text PDFVaccination is considered the best strategy for limiting and eliminating the COVID-19 pandemic. The success of this strategy relies on the rate of vaccine deployment and acceptance across the globe. As these efforts are being conducted, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is continuously mutating, which leads to the emergence of variants with increased transmissibility, virulence, and resistance to vaccines.
View Article and Find Full Text PDFJ Theor Biol
December 2021
Control strategies that employ real time polymerase chain reaction (RT-PCR) tests for the diagnosis and surveillance of COVID-19 epidemic are inefficient in fighting the epidemic due to high cost, delays in obtaining results, and the need of specialized personnel and equipment for laboratory processing. Cheaper and faster alternatives, such as antigen and paper-strip tests, have been proposed. They return results rapidly, but have lower sensitivity thresholds for detecting virus.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2021
Usutu virus (USUV; family: genus: ), is an emerging zoonotic arbovirus that causes severe neuroinvasive disease in humans and has been implicated in the loss of breeding bird populations in Europe. USUV is maintained in an enzootic cycle between ornithophilic mosquitos and wild birds. As a member of the Japanese encephalitis serocomplex, USUV is closely related to West Nile virus (WNV) and St.
View Article and Find Full Text PDFThe highly controlled migration of neutrophils toward the site of an infection can be altered when they are trained with lipopolysaccharides (LPS), with high dose LPS enhancing neutrophil migratory pattern toward the bacterial derived source signal and super-low dose LPS inducing either migration toward an intermediary signal or dysregulation and oscillatory movement. Empirical studies that use microfluidic chemotaxis-chip devices with two opposing chemoattractants showed differential neutrophil migration after challenge with different LPS doses. The epigenetic alterations responsible for changes in neutrophil migratory behavior are unknown.
View Article and Find Full Text PDFThe relationship between the inoculum dose and the ability of the pathogen to invade the host is poorly understood. Experimental studies in non-human primates infected with different inoculum doses of hepatitis B virus have shown a non-monotonic relationship between dose magnitude and infection outcome, with high and low doses leading to 100% liver infection and intermediate doses leading to less than 0.1% liver infection, corresponding to CD4 T-cell priming.
View Article and Find Full Text PDFThe RNA interference (RNAi) drug ARC-520 was shown to be effective in reducing serum hepatitis B virus (HBV) DNA, hepatitis B e antigen (HBeAg) and hepatitis B surface antigen (HBsAg) in HBeAg-positive patients treated with a single dose of ARC-520 and daily nucleosidic analogue (entecavir). To provide insights into HBV dynamics under ARC-520 treatment and its efficacy in blocking HBV DNA, HBsAg, and HBeAg production we developed a multi-compartmental pharmacokinetic-pharamacodynamic model and calibrated it with frequent measured HBV kinetic data. We showed that the time-dependent single dose ARC-520 efficacies in blocking HBsAg and HBeAg are more than 96% effective around day 1, and slowly wane to 50% in 1-4 months.
View Article and Find Full Text PDFStrain-specific plasma cells are capable of producing neutralizing antibodies that are essential for clearance of challenging pathogens. These neutralizing antibodies also function as a main defense against disease establishment in a host. However, when a rapidly mutating pathogen infects a host, successful control of the invasion requires shifting the production of plasma cells from strain-specific to broadly reactive.
View Article and Find Full Text PDFSpontaneous or drug-induced loss of hepatitis B e antigen is considered a beneficial event in the disease progression of chronic hepatitis B virus infections. Mathematical models of within-host interactions are proposed; which provide insight into hepatitis B e antibody formation, its influence on hepatitis B e antigen seroclearance, and reversion of anergic cytotoxic immune responses. They predict that antibody expansion causes immune activation and hepatitis B e antigen seroclearance.
View Article and Find Full Text PDF