Publications by authors named "Stacey Borrego"

Objective: Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood.

View Article and Find Full Text PDF

Methionine (Met) is an essential amino acid and critical precursor to the cellular methyl donor S-adenosylmethionine. Unlike nontransformed cells, cancer cells have a unique metabolic requirement for Met and are unable to proliferate in growth media where Met is replaced with its metabolic precursor, homocysteine. This metabolic vulnerability is common among cancer cells regardless of tissue origin and is known as "methionine dependence", "methionine stress sensitivity", or the Hoffman effect.

View Article and Find Full Text PDF

Unlike normal cells, transformed cells are unable to grow when methionine in the growth media is restricted. Reversion to methionine independence is a rare event in transformed and malignant cells. Methionine-independent revertants provide an excellent system to identify metabolic signatures and molecular characteristics associated with methionine dependency of transformed cells.

View Article and Find Full Text PDF

Background: The majority of cancer cells have a unique metabolic requirement for methionine that is not observed in normal, non-tumorigenic cells. This phenotype is described as "methionine dependence" or "methionine stress sensitivity" in which cancer cells are unable to proliferate when methionine has been replaced with its metabolic precursor, homocysteine, in cell culture growth media. We focus on the metabolic response to methionine stress in the triple negative breast cancer cell line MDA-MB-468 and its methionine insensitive derivative cell line MDA-MB-468res-R8.

View Article and Find Full Text PDF

Methionine and homocysteine are metabolites in the transmethylation pathway leading to synthesis of the methyl-donor S-adenosylmethionine (SAM). Most cancer cells stop proliferating during methionine stress conditions, when methionine is replaced in the growth media by its immediate metabolic precursor homocysteine (Met-Hcy+). Non-transformed cells proliferate in Met-Hcy+ media, making the methionine metabolic requirement of cancer cells an attractive target for therapy, yet there is relatively little known about the molecular mechanisms governing the methionine stress response in cancer cells.

View Article and Find Full Text PDF

Lamin A is a component of the nuclear lamina that plays a major role in the structural organization and function of the nucleus. Lamin A is synthesized as a prelamin A precursor which undergoes four sequential post-translational modifications to generate mature lamin A. Significantly, a large number of point mutations in the LMNA gene cause a range of distinct human disorders collectively known as laminopathies.

View Article and Find Full Text PDF