Publications by authors named "Sreevidhya Ramakrishnan"

Histone deacetylases (HDACs) are crucial epigenetic regulators involved in the modulation of gene expression and are promising therapeutic targets for treating various diseases, including central nervous system disorders and cancer. HDAC inhibitors exhibit neuroprotective, antiepileptogenic, and antidepressant properties in animal models, underscoring their clinical relevance. Quantifying HDAC activity is essential for identifying inhibitors and evaluating their effects under physiological or pathological conditions.

View Article and Find Full Text PDF

Children are particularly susceptible to the neurotoxic effects of organophosphates, which can lead to developmental neuronal deficits and associated dysfunction, including cognitive disabilities, epilepsy, and associated comorbidities. Anticonvulsants like benzodiazepines fail to prevent the lasting neurobehavioral and neuropathological effects of organophosphate exposure, emphasizing the need for new anticonvulsants to address these effects. This study evaluated the efficacy of the synthetic neurosteroid ganaxolone (GX) in combating persistent behavioral deficits, electrographic abnormalities, and neuropathological damage induced by diisopropylfluorophosphate (DFP) intoxication in pediatric rats.

View Article and Find Full Text PDF

Neuronal injury, neurodegeneration, and neuroanatomical changes are key pathological features of various neurological disorders, including epilepsy, stroke, traumatic brain injury, Parkinson's disease, autism, and Alzheimer's disease. Accurate quantification of neurons and interneurons in different brain regions is critical for understanding the progression of neurodegenerative disorders in animal models. Traditional scoring methods are often superficial, biased, and unreliable for evaluating neuropathology.

View Article and Find Full Text PDF
Article Synopsis
  • Kindling models are important animal models for studying epilepsy, characterized by the gradual progression from brief focal seizures to generalized tonic-clonic seizures through sub-threshold stimulation.
  • These models utilize techniques like implanted electrodes and chemoconvulsants to induce seizures, allowing researchers to test new antiseizure medications with high predictive validity.
  • The article offers detailed protocols for different kindling methods, along with insights into using pharmacological agents and genetically modified mice to better understand seizure dynamics and potential treatments for epilepsy.*
View Article and Find Full Text PDF
Article Synopsis
  • Neurological conditions like strokes and brain injuries often come with additional issues such as cognitive and psychiatric problems, complicating treatment and diagnosis.
  • There is a gap between clinical experiences and lab experiments, which makes it hard to understand how these conditions interact with cognitive and mental health issues.
  • The article outlines methods to evaluate various behavioral aspects, including memory, anxiety, and depression in animal models, emphasizing the need for comprehensive testing that takes into account different factors like environment and age.
View Article and Find Full Text PDF

Organophosphates (OPs) and nerve agents are potent neurotoxic compounds that cause seizures, status epilepticus (SE), brain injury, or death. There are persistent long-term neurologic and neurodegenerative effects that manifest months to years after the initial exposure. Current antidotes are ineffective in preventing these long-term neurobehavioral and neuropathological changes.

View Article and Find Full Text PDF

Nerve agents and organophosphates (OP) are neurotoxic chemicals that induce acute seizures, status epilepticus (SE), and mortality. Long-term neurologic and neurodegenerative effects manifest months to years after OP exposure. Current benzodiazepine anticonvulsants are ineffective in preventing such long-term neurobehavioral and neuropathological changes.

View Article and Find Full Text PDF

Children are highly vulnerable to the neurotoxic effects of organophosphates (OPs), which can cause neuronal developmental defects, including intellectual disability, autism, epilepsy, and related comorbidities. Unfortunately, no specific pediatric OP neurotoxicity model currently exists. In this study, we developed and characterized a pediatric rat model of status epilepticus (SE) induced by the OP diisopropylfluorophosphate (DFP) and examined its impact on long-term neurological outcomes.

View Article and Find Full Text PDF

Sex differences are common in human epilepsy. Although men are more susceptible to seizure than women, the mechanisms underlying sex-specific vulnerabilities to seizure are unclear. The organophosphate (OP) diisopropylfluorophosphate (DFP) is known to cause neurotoxicity and status epilepticus (SE), a serious neurologic condition that causes prolonged seizures and brain damage.

View Article and Find Full Text PDF

Epilepsy is a serious neurological disorder associated with recurrent and unpredictable seizures and extensive neuropsychiatric comorbidities. There is no cure for epilepsy, and over one third of epileptic patients have been diagnosed with drug-refractory epilepsy, indicating the critical need for novel antiseizure medications (ASMs). Cannabidiol (CBD) has been shown to decrease seizures in pediatric epilepsies, such as Dravet and Lennox-Gastaut syndromes; however, it has not been rigorously tested for adult seizures or in models of refractory focal epilepsy.

View Article and Find Full Text PDF

Presently there is no drug therapy for curing epilepsy. Despite many advancements in epilepsy research, nearly 30% of people with epilepsy remain refractory to current antiseizure medications (ASM). Cannabidiol (CBD) has recently been approved as an ASM for pediatric refractory seizures, but it has not been widely tested for adult epileptogenesis and focal onset seizures.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a leading cause of epilepsy in military persons and civilians. Spontaneous recurrent seizures (SRSs) occur in the months or years following the injury, which is commonly referred to as post-traumatic epilepsy (PTE). Currently, there is no effective treatment or cure for PTE; therefore, there is a critical need to develop animal models to help further understand and assess mechanisms and interventions related to TBI-induced epilepsy.

View Article and Find Full Text PDF

The prolonged in vivo persistence of antibodies results in high background and poor contrast during their use as molecular imaging agents for positron emission tomography (PET). We have recently described a class of engineered Fc fusion proteins that selectively deplete antigen-specific antibodies without affecting the levels of antibodies of other specificities. Here, we demonstrate that these Fc fusions (called Seldegs, for selective degradation) can be used to clear circulating, radiolabeled HER2-specific antibody during diagnostic imaging of HER2-positive tumors in mice.

View Article and Find Full Text PDF

The resolution of an imaging system is a key property that, despite many advances in optical imaging methods, remains difficult to define and apply. Rayleigh's and Abbe's resolution criteria were developed for observations with the human eye. However, modern imaging data is typically acquired on highly sensitive cameras and often requires complex image processing algorithms to analyze.

View Article and Find Full Text PDF

Despite the rapidly expanding use of antibody-based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody-opsonized tumor cells is limited. Here we report the formation of a phagosome-associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2-positive cancer cells in the presence of the HER2-specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome.

View Article and Find Full Text PDF