Publications by authors named "Sophie Curbo"

Many educational institutions transitioned to digital distance-based learning and assessment formats in 2020 due to the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) pandemic. This shift has often been associated with concerns about increased student cheating and heightened stress. In this study, we compared the major course assessment grades of students in a microbiology course delivered through a digital distance-based format, including a take-home examination and a examination during 2020, 2021, and 2022 ( = 127) with those who took the course in a traditional, live, in-person format with an in-class examination in 2019 ( = 45).

View Article and Find Full Text PDF

ChatGPT (GPT-3.5) has entered higher education and there is a need to determine how to use it effectively. This descriptive study compared the ability of GPT-3.

View Article and Find Full Text PDF

Deficiency in thymidine kinase 2 (TK2) causes mitochondrial DNA depletion. Liver mitochondria are severely affected in Tk2 complete knockout models and have been suggested to play a role in the pathogenesis of the Tk2 knockout phenotype, characterized by loss of hypodermal fat tissue, growth retardation and reduced life span. Here we report a liver specific Tk2 knockout (KO) model to further study mechanisms contributing to the phenotypic changes associated with Tk2 deficiency.

View Article and Find Full Text PDF

Purpose: It aims to find students’ performance of and perspectives on an objective structured practical examination (OSPE) for assessment of laboratory and preclinical skills in biomedical laboratory science (BLS). It also aims to investigate the perception, acceptability, and usefulness of OSPE from the students’ and examiners’ point of view.

Methods: This was a longitudinal study to implement an OSPE in BLS.

View Article and Find Full Text PDF

The plasma level of human thioredoxin-1 (Trx1) has been shown to be increased in various somatic diseases and psychiatric disorders. However, when comparing the reported plasma levels of Trx1, a great inter-study variability, as well as variability in study outcomes of differences between patients and control subjects has been observed, ultimately limiting the possibility to make comparative analyses. Trx1 is a highly redox active protein prone to form various redox forms, e.

View Article and Find Full Text PDF

Thymidine kinase 2 (TK2) deficiency in humans leads to a myopathic form of mitochondrial DNA (mtDNA) deficiency. Here we present a skeletal and cardiac muscle specific TK2 knockout mouse (mTk2 KO). The mice showed dilated hearts and markedly reduced adipose tissue during week 12 to 16.

View Article and Find Full Text PDF

Deoxyguanosine kinase (DGUOK) deficiency causes mtDNA depletion and mitochondrial dysfunction. We reported long survival of DGUOK knockout (Dguok-/-) mice despite low (<5%) mtDNA content in liver tissue. However, the molecular mechanisms enabling the extended survival remain unknown.

View Article and Find Full Text PDF

Adult neurogenesis, the production of newborn neurons from neural stem cells (NSCs) has been suggested to be decreased in patients with schizophrenia. A similar finding was observed in an animal model of schizophrenia, as indicated by decreased bromodeoxyuridine (BrdU) labelling cells in response to a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist. The antipsychotic drug clozapine was shown to counteract the observed decrease in BrdU-labelled cells in hippocampal dentate gyrus (DG).

View Article and Find Full Text PDF

Deoxyguanosine kinase (DGUOK) provides guanosine and adenosine nucleotides for mitochondrial DNA (mtDNA) replication, and its deficiency in humans leads to hepatocerebral mtDNA depletion syndrome or to isolated hepatic disease. There are poor treatment options for DGUOK deficiency and the aim of this study was to generate a model for further studies of the disease that could reveal novel treatment strategies. We report a Dguok-deficient mouse strain that, similar to humans, is most severely affected in the liver.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV-1) entry is initiated by the binding between the viral envelope glycoprotein gp120 and the host receptor CD4, and followed by reduction of structural disulfides of gp120 and CD4. The host thioredoxin-1 (Trx1) efficiently reduces disulfides of gp120 and CD4 in vitro, and recently CD4-dependent HIV-1 entry was shown to be inhibited by anti-Trx1-antibodies, indicating a central role for Trx1. 1-methylpropyl-2-imidazolyl disulfide (PX-12) is a reversible inhibitor of the Trx1 system that may also cause a slow irreversible thioalkylation of Trx1.

View Article and Find Full Text PDF

Metformin, a commonly used agent in the treatment of type 2 diabetes, is also associated with reduced risk of cancer development and improvement in cancer survival. Although much is known about metformin, the mechanisms behind its anti-cancer properties are not fully understood. In this study we addressed the role of a mitochondrial transporter commonly upregulated in cancer cells, SLC25A10, for cell survival and metabolism in the presence of metformin.

View Article and Find Full Text PDF

Background: Glutamate oxaloacetate transaminase 1 (GOT1) regulates cellular metabolism through coordinating the utilization of carbohydrates and amino acids to meet nutrient requirements. KRAS mutated cancer cells were recently shown to rely on GOT1 to support long-term cell proliferation. The aim of the present study was to address the role of GOT1 in the metabolic adaption of cancer cells.

View Article and Find Full Text PDF

Background: The entry of HIV into its host cell is an interesting target for chemotherapeutic intervention in the life-cycle of the virus. During entry, reduction of disulfide bridges in the viral envelope glycoprotein gp120 by cellular oxidoreductases is crucial. The cellular thioredoxin reductase-1 plays an important role in this oxidoreduction process by recycling electrons to thioredoxin-1.

View Article and Find Full Text PDF

Dysregulation of cell metabolism is critical for the growth properties of cancer cells. The purpose of this study was to understand the role of substrate transport across the mitochondrial membrane to sustain the metabolic shift and redox defense in cancer cells. Mitochondrial carrier SLC25A10 is up-regulated in a variety of tumors and is involved in regulating intracellular levels of reactive oxygen species.

View Article and Find Full Text PDF

Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time.

View Article and Find Full Text PDF

Thioredoxin-1 (Trx1) is a protein antioxidant involved in major cellular processes. Increased plasma levels of Trx1 have been associated with human diseases suggesting that Trx1 is a marker for oxidative stress with putative clinical use. However, the reported mean levels of Trx1 in the control cohorts vary a hundred-fold between studies (0.

View Article and Find Full Text PDF

Thymidine kinase 2 (TK2) deficiency in humans causes mitochondrial DNA (mtDNA) depletion syndrome. To study the molecular mechanisms underlying the disease and search for treatment options, we previously generated and described a TK2 deficient mouse strain (TK2(-/-)) that progressively loses its mtDNA. The TK2(-/-) mouse model displays symptoms similar to humans harboring TK2 deficient infantile fatal encephalomyopathy.

View Article and Find Full Text PDF

A strategy to reverse the symptoms of thymidine kinase 2 (TK2) deficiency in a mouse model was investigated. The nucleoside kinase from Drosophila melanogaster (Dm-dNK) was expressed in TK2-deficient mice that have been shown to present with a severe phenotype caused by mitochondrial DNA depletion. The Dm-dNK(+/-) transgenic mice were shown to be able to rescue the TK2-deficient mice.

View Article and Find Full Text PDF

The global protein thiol pool has been reported to play a major role in the defense against oxidative stress as a redox buffer similar to glutathione. The present study uses a novel method to visualize cellular changes of the global protein thiol pool in response to induced oxidative stress. Unexpectedly, the results showed an uneven distribution of protein thiols in resting cells with no apparent change in their level or distribution in response to diamide as has been reported previously.

View Article and Find Full Text PDF

Interleukin-4 (IL-4) contains three structurally important intramolecular disulfides that are required for the bioactivity of the cytokine. We show that the cell surface of HeLa cells and endotoxin-activated monocytes can reduce IL-4 intramolecular disulfides in the extracellular space and inhibit binding of IL-4 to the IL-4Ralpha receptor. IL-4 disulfides were in vitro reduced by thioredoxin 1 (Trx1) and protein disulfide isomerase (PDI).

View Article and Find Full Text PDF

The nucleoside analogs 9-beta-D-arabinofuranosylguanine (araG) and 1-beta-d-arabinofuranosylthymine (araT) are substrates of mitochondrial nucleoside kinases and have previously been shown to be predominantly incorporated into mtDNA of cells, but the pharmacological importance of their accumulation in mtDNA is not known. Here, we examined the role of mtDNA in the response to araG, araT and other anti-cancer and anti-viral agents in a MOLT-4 wild-type (wt) T-lymphoblastoid cell line and its petite mutant MOLT-4 rho(0) cells (lacking mtDNA). The mRNA levels and activities of deoxyguanosine kinase (dGK), deoxycytidine kinase (dCK), thymidine kinase 1 (TK1) and thymidine kinase 2 (TK2) were determined in the two cell lines.

View Article and Find Full Text PDF

GW506U78 or nelarabine (Glaxo-SmithKline) is a nucleoside analog that is rapidly converted by cells of lymphoid lineage to its corresponding arabinosylguanine nucleotide triphosphate (araGTP). The triphosphate form of araG acts as a substrate for DNA polymerases and araG gets incorporated into the DNA, resulting in inhibition of DNA synthesis and subsequent cytotoxicity. It has been shown that nelarabine has activity as a single agent in patients with T-cell malignancies that have relapsed or are refractory to other therapy.

View Article and Find Full Text PDF

Pyrophosphatases (PPases) catalyze the hydrolysis of inorganic pyrophosphate generated in several cellular enzymatic reactions. A novel human pyrophosphatase cDNA encoding a 334-amino-acid protein approximately 60% identical to the previously identified human cytosolic PPase was cloned and characterized. The novel enzyme, named PPase-2, was enzymatically active and catalyzed hydrolysis of pyrophosphate at a rate similar to that of the previously identified PPase-1.

View Article and Find Full Text PDF

Drosophila melanogaster cells express a multi-substrate deoxyribonucleoside kinase that phosphorylates both purine and pyrimidine deoxyribonucleosides. The subsequent phosphorylation step is catalyzed by nucleoside monophosphate kinases. We have cloned and characterized the D.

View Article and Find Full Text PDF

The nucleoside analog 9-beta-D-arabinofuranosylguanine (araG) is presently evaluated in clinical trials for therapy of T-cell lymphoid malignancies. AraG is a substrate for the mitochondrial deoxyguanosine kinase and we have recently shown that araG is predominantly incorporated into mitochondrial DNA (mtDNA). In this study we have investigated the effects of araG on mtDNA content and function.

View Article and Find Full Text PDF