Summary: Unsupervised deconvolution algorithms are often used to estimate cell composition from bulk tissue samples. However, applying cell-type deconvolution and interpreting the results remain a challenge, even more without prior training in bioinformatics. Here, we propose a tool for estimating and identifying cell type composition from bulk transcriptomes or methylomes.
View Article and Find Full Text PDFRubinstein-Taybi syndrome (RTS) is a rare and severe genetic developmental disorder characterized by multiple congenital anomalies and intellectual disability. CREBBP and EP300, the two genes known to cause RTS encode transcriptional coactivators with a catalytic lysine acetyltransferase (KAT) activity. Loss of CBP or p300 function results in a deficit in protein acetylation, in particular at histones.
View Article and Find Full Text PDFMotivation: Spatial transcriptomics enables the analysis of cell crosstalk in healthy and diseased organs by capturing the transcriptomic profiles of millions of cells within their spatial contexts. However, spatial transcriptomics approaches also raise new computational challenges for the multidimensional data analysis associated with spatial coordinates.
Results: In this context, we introduce a novel analytical framework called CellsFromSpace based on independent component analysis (ICA), which allows users to analyze various commercially available technologies without relying on a single-cell reference dataset.
Motivation: Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox.
View Article and Find Full Text PDFLactate is a central metabolite in brain physiology but also contributes to tumor development. Glioblastoma (GB) is the most common and malignant primary brain tumor in adults, recognized by angiogenic and invasive growth, in addition to its altered metabolism. We show herein that lactate fuels GB anaplerosis by replenishing the tricarboxylic acid (TCA) cycle in absence of glucose.
View Article and Find Full Text PDFNeuroimaging-genetics cohorts gather two types of data: brain imaging and genetic data. They allow the discovery of associations between genetic variants and brain imaging features. They are invaluable resources to study the influence of genetics and environment in the brain features variance observed in normal and pathological populations.
View Article and Find Full Text PDFForensic DNA signal is notoriously challenging to interpret and requires the implementation of computational tools that support its interpretation. While data from high-copy, low-contributor samples result in electropherogram signal that is readily interpreted by probabilistic methods, electropherogram signal from forensic stains is often garnered from low-copy, high-contributor-number samples and is frequently obfuscated by allele sharing, allele drop-out, stutter and noise. Since forensic DNA profiles are too complicated to quantitatively assess by manual methods, continuous, probabilistic frameworks that draw inferences on the Number of Contributors (NOC) and compute the Likelihood Ratio (LR) given the prosecution's and defense's hypotheses have been developed.
View Article and Find Full Text PDFBackground: In order to isolate an individual's genotype from a sample of biological material, most laboratories use PCR and Capillary Electrophoresis (CE) to construct a genetic profile based on polymorphic loci known as Short Tandem Repeats (STRs). The resulting profile consists of CE signal which contains information about the length and number of STR units amplified. For samples collected from the environment, interpretation of the signal can be challenging given that information regarding the quality and quantity of the DNA is often limited.
View Article and Find Full Text PDFMethods Mol Biol
January 2020
In the post genomic era, large and complex molecular datasets from genome and metagenome sequencing projects expand the limits of what is possible for bioinformatic analyses. Network-based methods are increasingly used to complement phylogenetic analysis in studies in molecular evolution, including comparative genomics, classification, and ecological studies. Using network methods, the vertical and horizontal relationships between all genes or genomes, whether they are from cellular chromosomes or mobile genetic elements, can be explored in a single expandable graph.
View Article and Find Full Text PDFThe inclusion of introgressive processes in evolutionary studies induces a less constrained view of evolution. Network-based methods (like large-scale similarity networks) allow to include in comparative genomics all extrachromosomic carriers (like viruses, the most abundant biological entities on the planet) with their cellular hosts. The integration of several levels of biological organization (genes, genomes, communities, environments) enables more comprehensive analyses of gene sharing and improved sequence-based classifications.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2015
The origin of oxygenic photosynthesis in the Archaeplastida common ancestor was foundational for the evolution of multicellular life. It is very likely that the primary endosymbiosis that explains plastid origin relied initially on the establishment of a metabolic connection between the host cell and captured cyanobacterium. We posit that these connections were derived primarily from existing host-derived components.
View Article and Find Full Text PDFBackground: High-throughput sequencing technologies are lifting major limitations to molecular-based ecological studies of eukaryotic microbial diversity, but analyses of the resulting millions of short sequences remain a major bottleneck for these approaches. Here, we introduce the analytical and statistical framework of sequence similarity networks, increasingly used in evolutionary studies and graph theory, into the field of ecology to analyze novel pyrosequenced V4 small subunit rDNA (SSU-rDNA) sequence data sets in the context of previous studies, including SSU-rDNA Sanger sequence data from cultured ciliates and from previous environmental diversity inventories.
Results: Our broadly applicable protocol quantified the progress in the description of genetic diversity of ciliates by environmental SSU-rDNA surveys, detected a fundamental historical bias in the tendency to recover already known groups in these surveys, and revealed substantial amounts of hidden microbial diversity.
The Great Oxidation Event (GOE) ∼2.4 billion years ago resulted from the accumulation of oxygen by the ancestors of cyanobacteria [1-3]. Cyanobacteria continue to play a significant role in primary production [4] and in regulating the global marine and limnic nitrogen cycles [5, 6].
View Article and Find Full Text PDFJ Eukaryot Microbiol
March 2015
The study of diseased human cells and of cells isolated from the natural environment will likely be revolutionized by single cell genomics (SCG). Here, we used protein similarity networks to explore within- and between-cell DNA differences from SCG data derived from six individual rhizarian cells related to Paulinella ovalis and proteins from the complete genome of another rhizarian, Bigelowiella natans. We identified shared and distinct DNA components within our SCG data and between P.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
Most brain functional connectivity methods in fMRI require a brain parcellation into functionally homogeneous regions. In this work we propose a novel parcellation approach based on a spatial hierarchical clustering, that provides clusters within a multi-level framework. The method has the advantage of producing several brain parcellations rather than a single one from a fixed size-homogeneity criterion.
View Article and Find Full Text PDF