Publications by authors named "Sivaramesh Wigneshweraraj"

The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq.

View Article and Find Full Text PDF

The RNA binding protein Hfq has a central role in the post-transcription control of gene expression in many bacteria. Numerous studies have mapped the transcriptome-wide Hfq-mediated RNA-RNA interactions in growing bacteria or bacteria that have entered short-term growth-arrest. To what extent post-transcriptional regulation underpins gene expression in growth-arrested bacteria remains unknown.

View Article and Find Full Text PDF

Probiotic bacteria confer multiple health benefits, including preventing the growth, colonization, or carriage of harmful bacteria in the gut. Bacteriocins are antibacterial peptides produced by diverse bacteria, and their production is tightly regulated and coordinated at the transcriptional level. A popular strategy for enhancing the antibacterial properties of probiotic bacteria is to retrofit them with the ability to overproduce heterologous bacteriocins.

View Article and Find Full Text PDF

Post-transcriptional regulation (PTR) determines the fate of RNA in the cell and represents an important control point in the flow of genetic information and thus underpins many, if not all, aspects of cell function. Host takeover by phages through misappropriation of the bacterial transcription machinery is a relatively advanced area of research. However, several phages encode small regulatory RNAs, which are major mediators of PTR, and produce specific proteins to manipulate bacterial enzymes involved in RNA degradation.

View Article and Find Full Text PDF

Enolase is a highly conserved enzyme that presents in all organisms capable of glycolysis or fermentation. Its immediate product phosphoenolpyruvate is essential for other important processes like peptidoglycan synthesis and the phosphotransferase system in bacteria. Therefore, enolase inhibitors are of great interest.

View Article and Find Full Text PDF

The canonical function of a bacterial sigma (σ) factor is to determine the gene specificity of the RNA polymerase (RNAP). In several diverse bacterial species, the σ factor uniquely confers distinct functional and regulatory properties on the RNAP. A hallmark feature of the σ-RNAP is the obligatory requirement for an activator ATPase to allow transcription initiation.

View Article and Find Full Text PDF

Under conditions of nutrient adversity, bacteria adjust metabolism to minimize cellular energy usage. This is often achieved by controlling the synthesis and degradation of RNA. In Escherichia coli, RNase E is the central enzyme involved in RNA degradation and serves as a scaffold for the assembly of the multiprotein complex known as the RNA degradosome.

View Article and Find Full Text PDF

DNA mimicry by proteins is a strategy that employed by some proteins to occupy the binding sites of the DNA-binding proteins and deny further access to these sites by DNA. Such proteins have been found in bacteriophage, eukaryotic virus, prokaryotic, and eukaryotic cells to imitate non-coding functions of DNA. Here, we report another phage protein Gp44 from bacteriophage SPO1 of , employing mimicry as part of unusual strategy to inhibit host RNA polymerase.

View Article and Find Full Text PDF

() is an aggressive opportunistic pathogen of prominent virulence and antibiotic resistance. These characteristics are due in part to the accessory gene regulator () quorum-sensing system, which allows for the rapid adaptation of to environmental changes and thus promotes virulence and the development of pathogenesis. AgrA is the system response regulator that binds to the P2 and P3 promoters and upregulates expression.

View Article and Find Full Text PDF

Spores of Bacillus species have novel properties, which allow them to lie dormant for years and then germinate under favourable conditions. In the current work, the role of a key metabolic integrator, coenzyme A (CoA), in redox regulation of growing cells and during spore formation in Bacillus megaterium and Bacillus subtilis is studied. Exposing these growing cells to oxidising agents or carbon deprivation resulted in extensive covalent protein modification by CoA (termed protein CoAlation), through disulphide bond formation between the CoA thiol group and a protein cysteine.

View Article and Find Full Text PDF

Bacteria initially respond to nutrient starvation by eliciting large-scale transcriptional changes. The accompanying changes in gene expression and metabolism allow the bacterial cells to effectively adapt to the nutrient-starved state. How the transcriptome subsequently changes as nutrient starvation ensues is not well understood.

View Article and Find Full Text PDF

The initial adaptive responses to nutrient depletion in bacteria often occur at the level of gene expression. Hfq is an RNA-binding protein present in diverse bacterial lineages that contributes to many different aspects of RNA metabolism during gene expression. Using photoactivated localization microscopy and single-molecule tracking, we demonstrate that Hfq forms a distinct and reversible focus-like structure in specifically experiencing long-term nitrogen starvation.

View Article and Find Full Text PDF

Central to the regulation of bacterial gene expression is the multisubunit enzyme RNA polymerase (RNAP), which is responsible for catalyzing transcription. As all adaptive processes are underpinned by changes in gene expression, the RNAP can be considered the major mediator of any adaptive response in the bacterial cell. In bacterial pathogens, theoretically, single nucleotide polymorphisms (SNPs) in genes that encode subunits of the RNAP and associated factors could mediate adaptation and confer a selective advantage to cope with biotic and abiotic stresses.

View Article and Find Full Text PDF

Like eukaryotic and archaeal viruses, which coopt the host's cellular pathways for their replication, bacteriophages have evolved strategies to alter the metabolism of their bacterial host. SPO1 bacteriophage infection of results in comprehensive remodeling of cellular processes, leading to conversion of the bacterial cell into a factory for phage progeny production. A cluster of 26 genes in the SPO1 genome, called the host takeover module, encodes for potentially cytotoxic proteins that specifically shut down various processes in the bacterial host, including transcription, DNA synthesis, and cell division.

View Article and Find Full Text PDF

The parasitic life cycle of viruses involves the obligatory subversion of the host's macromolecular processes for efficient viral progeny production. Viruses that infect bacteria, bacteriophages (phages), are no exception and have evolved sophisticated ways to control essential biosynthetic machineries of their bacterial prey to benefit phage development. The xenogeneic regulation of bacterial cell function is a poorly understood area of bacteriology.

View Article and Find Full Text PDF

Bacterial adaptive responses to biotic and abiotic stresses often involve large-scale reprogramming of the transcriptome. Since nitrogen is an essential component of the bacterial cell, the transcriptional basis of the adaptive response to nitrogen starvation has been well studied. The adaptive response to N starvation in is primarily a 'scavenging response', which results in the transcription of genes required for the transport and catabolism of nitrogenous compounds.

View Article and Find Full Text PDF

Nasal colonization by the pathogen Staphylococcus aureus is a risk factor for subsequent infection. Loss of function mutations in the gene encoding the virulence regulator Rsp are associated with the transition of S. aureus from a colonizing isolate to one that causes bacteraemia.

View Article and Find Full Text PDF

The initial adaptive transcriptional response to nitrogen (N) starvation in Escherichia coli involves large-scale alterations to the transcriptome mediated by the transcriptional activator, NtrC. One of these NtrC-activated genes is yeaG, which encodes a conserved bacterial kinase. Although it is known that YeaG is required for optimal survival under sustained N starvation, the molecular basis by which YeaG benefits N starved E.

View Article and Find Full Text PDF

T7 development in requires the inhibition of the housekeeping form of the bacterial RNA polymerase (RNAP), Eσ, by two T7 proteins: Gp2 and Gp5.7. Although the biological role of Gp2 is well understood, that of Gp5.

View Article and Find Full Text PDF

As key molecules in most biological pathways, proteins physically contact one or more biomolecules in a highly specific manner. Several driving forces (i.e.

View Article and Find Full Text PDF

Transcription initiation is a major step in gene regulation for all organisms. In bacteria, the promoter DNA is first recognized by RNA polymerase (RNAP) to yield an initial closed complex. This complex subsequently undergoes conformational changes resulting in DNA strand separation to form a transcription bubble and an RNAP-promoter open complex; however, the series and sequence of conformational changes, and the factors that influence them are unclear.

View Article and Find Full Text PDF

Many bacterial adaptive responses to changes in growth conditions due to biotic and abiotic factors involve reprogramming of gene expression at the transcription level. The bacterial RNA polymerase (RNAP), which catalyzes transcription, can thus be considered as the major mediator of cellular adaptive strategies. But how do bacteria respond if a stress factor directly compromises the activity of the RNAP? We used a phage-derived small protein to specifically perturb bacterial RNAP activity in exponentially growing Escherichia coli.

View Article and Find Full Text PDF

Infection of Escherichia coli by the T7 phage leads to rapid and selective inhibition of the bacterial RNA polymerase (RNAP) by the 7 kDa T7 protein Gp2. We describe the identification and functional and structural characterisation of a novel 7 kDa T7 protein, Gp5.7, which adopts a winged helix-turn-helix-like structure and specifically represses transcription initiation from host RNAP-dependent promoters on the phage genome via a mechanism that involves interaction with DNA and the bacterial RNAP.

View Article and Find Full Text PDF

Daptomycin is a bactericidal antibiotic of last resort for serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Although resistance is rare, treatment failure can occur in more than 20% of cases and so there is a pressing need to identify and mitigate factors that contribute to poor therapeutic outcomes. Here, we show that loss of the Agr quorum-sensing system, which frequently occurs in clinical isolates, enhances S.

View Article and Find Full Text PDF