PeerJ
April 2025
Background: The unsafe disposal of pharmaceutical waste poses significant health hazards and causes environmental pollution on a global scale. The lack of specifically authorized guidelines in Saudi Arabia for the disposal of unused medicines available at home creates an undue economic burden and potentially threatens the environment and healthcare.
Aim: The current study aimed to determine the presence, disposal practices, and perceptions of unused or expired household medicines.
Int J Oral Maxillofac Implants
April 2025
Purpose: To develop Insulin-like Growth Factor-1 (IGF-1)-loaded poly (lactic-co-glycolic acid)(PLGA) nanoparticles (NPs) with altered surface charges (cationic, anionic, and neutral) and evaluate their dual antimicrobial and osteogenic potential in vitro.
Material And Methods: IGF-1-loaded NPs were synthesized via solvent evaporation, characterized for size, charge, encapsulation efficiency, and release kinetics, and tested against peri-implant pathogens (Tannerella forsythia, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Streptococcus mutans, and Staphylococcus aureus). The osteogenic potential was assessed using MG-63 (osteoblast-like) and U937 (osteoclast precursor) cell lines via MTT, ALP, and TRAP assays.
Int J Mol Epidemiol Genet
October 2024
Women are at a significantly higher risk of osteoporotic fractures, largely due to progressive bone demineralization and impaired bone microarchitecture. Low bone mineral density (BMD) is a common condition in women worldwide. Disrupted homocysteine (Hcy) metabolism has been linked to reduced BMD and increased risk of osteoporotic fractures.
View Article and Find Full Text PDFBackground: The incidence of CRC has increased worldwide over the past decade. The statistics report from WHO highlights the increased severity and fatality rate of CRC among the populations. Wnt/β-catenin is recognized as the resource for cell regeneration and cancer signaling pathways driven by frizzled receptor cofactors.
View Article and Find Full Text PDFCardiovascular diseases continue to challenge global health, demanding innovative therapeutic solutions. This review delves into the transformative role of mesenchymal stem cells (MSCs) in advancing cardiovascular therapeutics. Beginning with a historical perspective, we trace the development of stem cell research related to cardiovascular diseases, highlighting foundational therapeutic approaches and the evolution of cell-based treatments.
View Article and Find Full Text PDFAim: In the present case-controlled study, we explored the role of genetic polymorphism in three xenobiotic metabolizing genes, GSTM1, GSTT1 and GSTP1, and their association to gallbladder cancer (GBC) risk in a North Indian population. Its etiology is influenced by genetic, food habits, lifestyle, and environmental factors. GBC incidence is significantly higher in the Gangetic belt, India.
View Article and Find Full Text PDFStem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a major source of death and disability worldwide as a result of motor vehicle accidents, falls, attacks and bomb explosions. Currently, there are no FDA-approved drugs to treat TBI patients predominantly because of a lack of appropriate methods to deliver drugs to the brain for therapeutic effect. Existing clinical and pre-clinical studies have shown that minocycline's neuroprotective effects either through high plasma protein binding or an increased dosage requirement have resulted in neurotoxicity.
View Article and Find Full Text PDFCancers (Basel)
October 2022
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue.
View Article and Find Full Text PDFCurr Drug Targets
November 2022
Background: Drug-loaded novel nanoformulations are gaining importance due to their versatile properties compared to conventional pharmaceutical formulations. Nanomaterials, apart from their multifactorial benefits, have a wider scope in the prevention, treatment, and diagnosis of cancer. Understanding the chemistry of drug-loaded nano-formulations to elicit its behaviour both at molecular and systemic levels is critical in the present scenario.
View Article and Find Full Text PDFIndomethacin, a non-steroidal anti-inflammatory drug (NSAID), has been presented as a broad-spectrum antiviral agent. This randomised clinical trial in a hospital setting evaluated the efficacy and safety of this drug in RT-PCR-positive coronavirus disease 2019 (COVID-19) patients. A total of 210 RT-PCR-positive COVID-19 patients who provided consent were allotted to the control or case arm, based on block randomisation.
View Article and Find Full Text PDFJ Cancer Res Ther
April 2022
Purpose: Lung cancer mostly diagnosed at advanced inoperable stages; thereby, the chemo-, radiation-, targeted or immune-therapy alone or in combination remains the treatment of choice. In chemotherapy, platinum-based compounds such as cisplatin and carboplatin and third-generation drugs such as docetaxel, paclitaxel, gemcitabine, and vinorelbine are widely used. The beneficial therapeutic outcome of the chemotherapy alone or in combination with radiation (chemoradiation) and/or development of drug resistance depends on the inter-individual genetic differences.
View Article and Find Full Text PDFPurpose: Astrocyte dysfunction is a hallmark of central nervous system injury or infection. As a primary contributor to neurodegeneration, astrocytes are an ideal therapeutic target to combat neurodegenerative conditions. Gene therapy has arisen as an innovative technique that provides excellent prospect for disease intervention.
View Article and Find Full Text PDFAdvanced-stage cancers often metastasize to bone, and is the major cause of cancer-related morbidity and mortality. Due to poor biodistribution of intravenously administered anticancer drugs within the bone, chemotherapy is not optimally effective in treating bone metastasis. Additionally, overexpression of receptor activator of nuclear factor κB ligand (RANKL) in the bone microenvironment drives the vicious, destructive cycle of progression of bone metastasis and bone resorption.
View Article and Find Full Text PDFJ Photochem Photobiol B
October 2019
Cancer disease is a foremost health concern and top basis of death in comparison with many diseases including cardiovascular disorders. During initial diagnosis (usually late diagnosis), a majority of cancer patients suffer from metastatic and advanced cancer stages which resulted in limited therapeutic modalities based interventions and effectiveness. Though considerable advancement has been made in combating the disease, continuous and intense efforts are ongoing for early diagnosis and development of therapies.
View Article and Find Full Text PDFAim: In this case control study involving, 220 human subjects; polymorphisms in xenobiotic metabolizing genes (GST-M1, -T1 and -P1) and their association to lung cancer risk is being analysed among smokers and nonsmokers. GSTM1 or GSTT1 gene polymorphism and amino acid changes in GSTP1 have been correlated and may be associated to lung cancer risk. Other factor includes exposure to environmental pollutants and life style choices.
View Article and Find Full Text PDFIn spinal cord injury (SCI), timely therapeutic intervention is critical to inhibit the post-injury rapidly progressing degeneration of spinal cord. Towards that objective, we determined the accessibility of intravenously administered biodegradable nanoparticles (NPs) as a drug delivery system to the lesion site in rat and pig contusion models of SCI. Poly (d,l-lactide co-glycolide, PLGA)-based NPs loaded with a near-infrared dye as a marker for NPs were used.
View Article and Find Full Text PDFMol Ther Nucleic Acids
September 2018
Astrocytes, the "star-shaped" glial cells, are appealing gene-delivery targets to treat neurological diseases due to their diverse roles in brain homeostasis and disease. Cationic polymers have successfully delivered genes to mammalian cells and hence present a viable, non-immunogenic alternative to widely used viral vectors. In this study, we investigated the gene delivery potential of a series of arginine- and polyethylene glycol-modified, siloxane-based polyethylenimine analogs in primary cultured human neural cells (neurons and astrocytes) and in mice.
View Article and Find Full Text PDFEpigenetic modifications (e.g., DNA methylation or histone deacetylation) are commonly implicated in cancer chemoresistance.
View Article and Find Full Text PDFTitanium dioxide nanoparticles (TiONPs) are used in sunscreen products to protect the skin from the sun's ultraviolet rays. However, following exposure to sunlight, the photocatalytic activity of TiONPs can produce an excess of reactive oxygen species (ROS), causing skin cell damage, triggering an inflammatory response. In zebrafish model, we evaluated how well Pro-NP™ (biodegradable NPs containing superoxide dismutase and catalase) could protect them from TiONP-induced photo-oxidative stress.
View Article and Find Full Text PDFCell-membrane lipid composition can greatly influence biophysical properties of cell membranes, affecting various cellular functions. We previously showed that lipid synthesis becomes altered in the membranes of resistant breast cancer cells (MCF-7/ADR); they form a more rigid, hydrophobic lipid monolayer than do sensitive cell membranes (MCF-7). These changes in membrane lipids of resistant cells, attributed to epigenetic aberration, significantly affected drug transport and endocytic function, thus impacting the efficacy of anticancer drugs.
View Article and Find Full Text PDFIn this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcome drug resistance.
View Article and Find Full Text PDFDNA methyltransferase 1 (DNMT1) promotes DNA methylation to maintain cancer drug resistance. The epigenetic drug, decitabine (DAC) is a potent hypomethylating agent, but its effect is transient because of its instability. We tested the efficacy of DAC-loaded nanogels in doxorubicin-resistant breast cancer cells, DAC-resistant melanoma cells, and leukemia cells.
View Article and Find Full Text PDF