Heavy metal contamination in paddy fields poses serious risks to food safety and crop productivity. This study evaluated the potential of native soil fungi as bioinoculants to reduce metal uptake in rice cultivated under contaminated conditions. Eight fungal strains-four indigenous and four allochthonous-were selected based on their plant growth-promoting traits, including siderophore production and phosphate solubilization.
View Article and Find Full Text PDFCurr Microbiol
August 2023
Italy is the leading producer of rice in Europe, but this crop is increasingly threatened by many factors such as pathogens' resistance, pollution and climate change. To date, few works keep in consideration the ecological role that the open irrigation system can play in the dispersion of important opportunistic species, and if it is affected by agricultural management and environmental seasonal changing. This work carried out the mycological characterization of a rice field irrigation system located in Vistarino (Pavia, Lombardy, Italy).
View Article and Find Full Text PDFThe inoculation of plants with plant-growth-promoting microorganisms (PGPM) (i.e., bacterial and fungal strains) is an emerging approach that helps plants cope with abiotic and biotic stresses.
View Article and Find Full Text PDFThe co-growth and synergistic interactions among fungi and bacteria from the rhizosphere of plants able to hyper accumulate potentially toxic metals (PTMs) are largely unexplored. Fungi and bacteria contribute in an essential way to soil biogeochemical cycles mediating the nutrition, growth development, and health of associated plants at the rhizosphere level. Microbial consortia improve the formation of soil aggregates and soil fertility, producing organic acids and siderophores that increase solubility, mobilization, and consequently the accumulation of nutrients and metals from the rhizosphere.
View Article and Find Full Text PDFContamination of marine sediments by organic and/or inorganic compounds represents one of the most critical problems in marine environments. This issue affects not only biodiversity but also ecosystems, with negative impacts on sea water quality. The scientific community and the European Commission have recently discussed marine environment and ecosystem protection and restoration by sustainable green technologies among the main objectives of their scientific programmes.
View Article and Find Full Text PDFIs it possible to improve the efficiency of bioremediation technologies? The use of mixed cultures of bacteria and fungi inoculated at the rhizosphere level could promote the growth of the associated hyperaccumulating plant species and increase the absorption of metals in polluted soils, broadening new horizons on bioremediation purposes. This work investigates interactions between Ni-tolerant plant growth-promoting bacteria and fungi (BF) isolated from the rhizosphere of a hyperaccumulating plant. The aim is to select microbial consortia with synergistic activity to be used in integrated bioremediation protocols.
View Article and Find Full Text PDFMicroorganisms
June 2020
Composting is a complex process in which various micro-organisms, mainly fungi and bacteria, are involved. The process depends on a large number of factors (biological, chemical, and physical) among which microbial populations play a fundamental role. The high temperatures that occur during the composting process indicate the presence of thermotolerant and thermophilic micro-organisms that are key for the optimization of the process.
View Article and Find Full Text PDFPhotodiagnosis Photodyn Ther
March 2020
Background: A large number of systemic diseases can be linked to oral candida pathogenicity. The global trend of invasive candidiasis has increased progressively and is often accentuated by increasing Candida albicans resistance to the most common antifungal medications. Photodynamic therapy (PDT) is a promising therapeutic approach for oral microbial infections.
View Article and Find Full Text PDFSponges are considered promising sources of biomolecules for both pharmaceutical and cosmetic interests as well as for the production of biomaterials suitable for tissue engineering and regenerative medicine. Accordingly, the ability to grow sponges in captivity and in healthy conditions to increase their biomass is a required goal for the development of sponge aquaculture systems. To date, little information is available about the pathogenicity of fungi associated with sponges.
View Article and Find Full Text PDFEvidence of pyrite dissolution by Ehrh were observed for the first time in the abandoned sulphide Libiola mine in May 2017 (Sestri Levante, Liguria, Italy). This fungus is an ectomycorrhizal species able to colonize this extreme environment and bioaccumulate metals such as copper and silver in its fruiting bodies, and it is known to establish symbiosis with maritime pines present in the area, thus favouring their recolonization of the site. This paper presents evidence of promoted dissolution of sulphide minerals.
View Article and Find Full Text PDFThis study faces the characterization of the culturable microbiota of the facultative Ni-hyperaccumulator Alyssoides utriculata to obtain a collection of bacterial and fungal strains for potential applications in Ni phytoextraction. Rhizosphere soil samples and adjacent bare soil associated with A. utriculata from serpentine and non-serpentine sites were collected together with plant roots and shoots.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2019
Contaminated sediments represent an important management problem that also concerns their remediation. Indeed, port dredging activities produce huge volumes of contaminated sediments that, in turn, require proper handling because of their quantity of inorganic and organic substances. Conventional management-remediation strategies of polluted sediment involve sediment washing, electron-chemical separation, and thermal treatment.
View Article and Find Full Text PDFForensic Sci Int
August 2018
The present study reports the mycological data collected from two corpses preserved in controlled conditions and monitored for 6 weeks at the mortuary. On the whole during the monitoring more than 70 fungal CFU (Colony Forming Units) were sampled from the corpses. The data collected were used to map the body fungal colonization of the corpses during 6 weeks.
View Article and Find Full Text PDFMetal contamination constitutes a major source of pollution globally. Many recent studies emphasized the need to develop cheap and green technologies for the remediation or reclamation of environmental matrices contaminated by heavy metals. In this context, fungi are versatile organisms that can be exploited for bioremediation activities.
View Article and Find Full Text PDFAbandoned industrial sites and mines may constitute possible hazards for surrounding environment due to the presence of toxic compounds that may contaminate soils and waters. The possibility to remove metal contaminants, specifically nickel (Ni), by means of fungi was presented exploiting a set of fungal strains isolated from a Ligurian dismissed mine. The achieved results demonstrate the high Ni(II) tolerance, up to 500 mg Ni l, and removal capability of a Trichoderma harzianum strain.
View Article and Find Full Text PDFBoletus edulis and allied species (BEAS), known as "porcini mushrooms", represent almost the totality of wild mushrooms placed on the Italian market, both fresh and dehydrated. Furthermore, considerable amounts of these dried fungi are imported from China. The presence of Tylopilus spp.
View Article and Find Full Text PDFDue to the wide range of applications in high-tech solutions, Rare Earth Elements (REEs) have become object of great interest. In the last years several studies regarding technologies for REE extraction from secondary resources have been carried out. In particular biotechnologies, which use tolerant and accumulator microorganisms to recover and recycle precious metals, are replacing traditional methods.
View Article and Find Full Text PDFCopper is one of the most dangerous soil contaminants. Soils affected by high copper concentrations show low biodiversity and, above all, inadequate environmental quality. Microorganisms such as fungi can play a key role in metal-polluted ecosystems via colonization and decontamination.
View Article and Find Full Text PDF