Proc Natl Acad Sci U S A
June 2025
Biomolecular condensates form by phase separation of biological polymers and have important functions in the cell-functions that are inherently linked to their physical properties at different scales. A notable aspect of such membraneless organelles is that their viscoelastic properties can vary by orders of magnitude, but it has remained unclear how these pronounced differences are rooted in the nanoscale dynamics at the molecular level. Here, we investigate a series of condensates formed by complex coacervation of highly charged disordered proteins and polypeptides that span about two orders of magnitude in bulk viscosity.
View Article and Find Full Text PDFBiomolecular condensates form by phase separation of biological polymers and have important functions in the cell - functions that are inherently linked to their physical properties at different scales. A notable aspect of such membraneless organelles is that their viscoelastic properties can vary by orders of magnitude, but it has remained unclear how these pronounced differences are rooted in the nanoscale dynamics at the molecular level. Here we investigate a series of condensates formed by complex coacervation of highly charged disordered proteins and polypeptides that span about two orders of magnitude in bulk viscosity.
View Article and Find Full Text PDF