Various authors have suggested that extinctions and extirpations of large mammalian herbivores during the last ca. 50,000 years have altered ecological processes. Yet, the degree to which herbivore extinctions have influenced ecosystems has been difficult to assess because past changes in herbivore impact are difficult to measure directly.
View Article and Find Full Text PDFProc Biol Sci
October 2024
Since prehistory, humans have altered the composition of ecosystems by causing extinctions and introducing species. However, our understanding of how waves of species extinctions and introductions influence the structure and function of ecological networks through time remains piecemeal. Here, focusing on Australia, which has experienced many extinctions and introductions since the Late Pleistocene, we compared the functional trait composition of Late Pleistocene (130,00-115,000 years before present [ybp]), Holocene (11,700-3,000 ybp), and current Australian mammalian predator assemblages (≥70% vertebrate meat consumption; ≥1 kg adult body mass).
View Article and Find Full Text PDFPrehistoric and recent extinctions of large-bodied terrestrial herbivores had significant and lasting impacts on Earth's ecosystems due to the loss of their distinct trait combinations. The world's surviving large-bodied avian and mammalian herbivores remain among the most threatened taxa. As such, a greater understanding of the ecological impacts of large herbivore losses is increasingly important.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Philos Trans R Soc Lond B Biol Sci
March 2020
Large-bodied mammalian herbivores can influence processes that exacerbate or mitigate climate change. Herbivore impacts are, in turn, influenced by predators that place top-down forcing on prey species within a given body size range. Here, we explore how the functional composition of terrestrial large-herbivore and -carnivore guilds varies between three mammal distribution scenarios: Present-Natural, Current-Day and Extant-Native Trophic (ENT) Rewilding.
View Article and Find Full Text PDFGlob Chang Biol
January 2020
Data needed for macroecological analyses are difficult to compile and often hidden away in supplementary material under non-standardized formats. Phylogenies, range data, and trait data often use conflicting taxonomies and require ad hoc decisions to synonymize species or fill in large amounts of missing data. Furthermore, most available data sets ignore the large impact that humans have had on species ranges and diversity.
View Article and Find Full Text PDF