Circadian clocks synchronize diverse biological processes in organism to 24-hour light-dark cycles. The rhythmic activation of selective pathways enables the organisms to optimize their ability to store and generate chemical energy, to minimize environmental stresses, and to reproduce through cell growth and division cycles. In mammalian tissues, major metabolic pathways exhibit robust diurnal rhythms, including glucose and lipid metabolism as well as mitochondrial fuel oxidation.
View Article and Find Full Text PDFThe mammalian clock regulates major aspects of energy metabolism, including glucose and lipid homeostasis and mitochondrial oxidative metabolism. The biochemical basis for coordinated control of the circadian clock and diverse metabolic pathways is not well understood. Here we show that PGC-1alpha (Ppargc1a), a transcriptional coactivator that regulates energy metabolism, is rhythmically expressed in the liver and skeletal muscle of mice.
View Article and Find Full Text PDFSystematic mapping of protein-protein interactions, or 'interactome' mapping, was initiated in model organisms, starting with defined biological processes and then expanding to the scale of the proteome. Although far from complete, such maps have revealed global topological and dynamic features of interactome networks that relate to known biological properties, suggesting that a human interactome map will provide insight into development and disease mechanisms at a systems level. Here we describe an initial version of a proteome-scale map of human binary protein-protein interactions.
View Article and Find Full Text PDFThe PGC-1 family of coactivators stimulates the activity of certain transcription factors and nuclear receptors. Transcription factors in the sterol responsive element binding protein (SREBP) family are key regulators of the lipogenic genes in the liver. We show here that high-fat feeding, which induces hyperlipidemia and atherogenesis, stimulates the expression of both PGC-1beta and SREBP1c and 1a in liver.
View Article and Find Full Text PDFThe advent of systems biology necessitates the cloning of nearly entire sets of protein-encoding open reading frames (ORFs), or ORFeomes, to allow functional studies of the corresponding proteomes. Here, we describe the generation of a first version of the human ORFeome using a newly improved Gateway recombinational cloning approach. Using the Mammalian Gene Collection (MGC) resource as a starting point, we report the successful cloning of 8076 human ORFs, representing at least 7263 human genes, as mini-pools of PCR-amplified products.
View Article and Find Full Text PDFCalpastatin is a naturally occurring inhibitor of calpain, a protease involved in apoptotic cell death. A testis-specific isoform of calpastatin (tCAST) has been identified that is transcribed in haploid germ cells but not in spermatocytes. To investigate the possible function(s) of tCAST, we tested the hypothesis that the ectopic expression of calpastatin in spermatocytes would suppress the death of these cells in response to an apoptosis-inducing stimulus in vivo.
View Article and Find Full Text PDFSince its inception, the yeast two-hybrid (Y2H) system has proven to be an efficient system to identify novel protein-protein interactions. However, Y2H screens are sometimes criticized for generating high rates of false-positives. Minimizing false-positive interactions is especially important in proteome wide high-throughput (HT) Y2H.
View Article and Find Full Text PDFTo initiate a system-level analysis of C. elegans DAF-7/TGF-beta signaling, we combined interactome mapping with single and double genetic perturbations. Yeast two-hybrid (Y2H) screens starting with known DAF-7/TGF-beta pathway components defined a network of 71 interactions among 59 proteins.
View Article and Find Full Text PDFChin J Traumatol
February 2004
Objective: To investigate the effect of basic fibroblast growth factor (bFGF) and hyaluronic acid (HA) on the proliferation of rabbit chondrocytes in vitro.
Methods: Chondrocytes from the knee joints of New Zealand white rabbits were cultured. bFGF or HA or both were added into the culture medium respectively, and the proliferation of the chondrocytes was measured with MTT 3-(4, 5-dimethylthiazol-2-yl) 2, 5-diphenyl-tetra-zolium bromide.
To initiate studies on how protein-protein interaction (or "interactome") networks relate to multicellular functions, we have mapped a large fraction of the Caenorhabditis elegans interactome network. Starting with a subset of metazoan-specific proteins, more than 4000 interactions were identified from high-throughput, yeast two-hybrid (HT=Y2H) screens. Independent coaffinity purification assays experimentally validated the overall quality of this Y2H data set.
View Article and Find Full Text PDFTo verify the genome annotation and to create a resource to functionally characterize the proteome, we attempted to Gateway-clone all predicted protein-encoding open reading frames (ORFs), or the 'ORFeome,' of Caenorhabditis elegans. We successfully cloned approximately 12,000 ORFs (ORFeome 1.1), of which roughly 4,000 correspond to genes that are untouched by any cDNA or expressed-sequence tag (EST).
View Article and Find Full Text PDFChin J Traumatol
April 2002
Objective: To culture fibroblast cells from the knee ligaments and to study the biological characteristics of these cells.
Methods: Cells of the anterior cruciate ligament (ACL) and the medial collateral ligament (MCL) from New Zealand white rabbit were cultured in vitro. Cellular growth and expression of the collagen were analyzed.