Publications by authors named "Silvio Collani"

Soil contamination with toxic inorganic elements poses a major challenge to rice cultivation, affecting plant physiology, yield, and grain safety. While natural variation in tolerance exists among rice genotypes and related species, recent advances in genomics, breeding, and biotechnology offer new opportunities to enhance adaptation. This review synthesizes the current knowledge on the physiological effects of toxic elements and explores strategies to improve tolerance, from harnessing genetic diversity to genome editing and transgenic approaches.

View Article and Find Full Text PDF

Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.

View Article and Find Full Text PDF

Plants adjust their energy metabolism to continuous environmental fluctuations, resulting in a tremendous plasticity in their architecture. The regulatory circuits involved, however, remain largely unresolved. In , moderate perturbations in photosynthetic activity, administered by short-term low light exposure or unexpected darkness, lead to increased lateral root (LR) initiation.

View Article and Find Full Text PDF

Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers.

View Article and Find Full Text PDF

The floral transition is a critical step in the life cycle of flowering plants, and several mechanisms control this finely orchestrated process. TERMINAL FLOWER1 (TFL1) is a floral repressor and close relative of the florigen, FLOWERING LOCUS T (FT). During the floral transition, expression is up-regulated in the inflorescence apex to maintain the indeterminate growth of the shoot apical meristem (SAM).

View Article and Find Full Text PDF

Background: Plants rely on concentration gradients of the native auxin, indole-3-acetic acid (IAA), to modulate plant growth and development. Both metabolic and transport processes participate in the dynamic regulation of IAA homeostasis. Free IAA levels can be reduced by inactivation mechanisms, such as conjugation and degradation.

View Article and Find Full Text PDF

The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of () in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins.

View Article and Find Full Text PDF

Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes.

View Article and Find Full Text PDF

Recent findings suggest that alternative splicing has a critical role in controlling the responses of plants to temperature variations. However, alternative splicing factors in plants are largely uncharacterized. Here we establish the putative splice regulator, PORCUPINE (PCP), as temperature-specific regulator of development in Arabidopsis thaliana.

View Article and Find Full Text PDF

Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes.

View Article and Find Full Text PDF

Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function.

View Article and Find Full Text PDF

Distinct molecular mechanisms integrate changes in ambient temperature into the genetic pathways that govern flowering time in Arabidopsis thaliana. Temperature-dependent eviction of the histone variant H2A.Z from nucleosomes has been suggested to facilitate the expression of FT by PIF4 at elevated ambient temperatures.

View Article and Find Full Text PDF

By enforcing specific pollinator interactions, Aquilegia petal nectar spurs maintain reproductive isolation between species. Spur development is the result of three-dimensional elaboration from a comparatively two-dimensional primordium. Initiated by localized, oriented cell divisions surrounding the incipient nectary, this process creates a pouch that is extended by anisotropic cell elongation.

View Article and Find Full Text PDF

Background: Natural antisense transcripts (NATs) are a group of RNAs encoded within a cell that have transcript complementarity to other RNA transcripts. NATs have been identified in multiple eukaryotes, including humans, mice, yeast and several plants, and are known to play crucial roles in gene regulation and modification via RNA interference, alternative splicing and genomic imprinting. NATs are also involved in several human diseases.

View Article and Find Full Text PDF

Background: Olea europaea L. is a traditional tree crop of the Mediterranean basin with a worldwide economical high impact. Differently from other fruit tree species, little is known about the physiological and molecular basis of the olive fruit development and a few sequences of genes and gene products are available for olive in public databases.

View Article and Find Full Text PDF