Purpose: To evaluate the performance of an AI tool and relevant radiology professionals in detecting brain infarcts, intracranial hemorrhages, and tumors using abbreviated brain MRI scan protocols as prerequisite for an AI-driven workflow that dynamically selects additional imaging sequences based on real-time imaging findings.
Materials And Methods: A retrospective, consecutively enriched cohort of routine adult brain MRI scans from four Danish hospitals was constructed. Three consultant neuroradiologists, three radiology residents, three MR technologists, and an AI tool detected brain infarcts, hemorrhages, and tumors using an abbreviated 3-sequence protocol (DWI, SWI/T2*-GRE, T2-FLAIR) or 4-sequence protocol (DWI, SWI/T2*-GRE, T2-FLAIR, T1W) in a non-overlapping three-way split cross-over design.
Reliable reading and annotation of chest X-ray (CXR) images are essential for both clinical decision-making and AI model development. While most of the literature emphasizes pulmonary findings, this study evaluates the consistency and reliability of annotations for extrapulmonary findings, using a labelling scheme. Six clinicians with varying experience levels (novice, intermediate, and experienced) annotated 100 CXR images using a diagnostic labelling scheme, in two rounds, separated by a three-week washout period.
View Article and Find Full Text PDF: Approximately 50% of all oncological patients undergo radiation therapy, where personalized planning of treatment relies on gross tumor volume (GTV) delineation. Manual delineation of GTV is time-consuming, operator-dependent, and prone to variability. An increasing number of studies apply artificial intelligence (AI) techniques to automate such delineation processes.
View Article and Find Full Text PDFAlzheimers Dement
February 2025
Introduction: Identifying the link between early Alzheimer's disease (AD) pathological changes and neurodegeneration in asymptomatic individuals may lead to the discovery of preventive strategies. We assessed longitudinal brain atrophy and cognitive decline as a function of cerebrospinal fluid (CSF) AD biomarkers in two independent cohorts of cognitively unimpaired (CU) individuals.
Methods: We used longitudinal voxel-based morphometry (VBM) in combination with hippocampal subfield segmentation.
Importance: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels.
Objective: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age.
Design, Setting, And Participants: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]).
Background And Objectives: Vascular risk factors (VRFs) and cerebral small vessel disease (cSVD) are common in patients with Alzheimer disease (AD). It remains unclear whether this coexistence reflects shared risk factors or a mechanistic relationship and whether vascular and amyloid pathologies have independent or synergistic influence on subsequent AD pathophysiology in preclinical stages. We investigated links between VRFs, cSVD, and amyloid levels (Aβ) and their combined effect on downstream AD biomarkers, that is, CSF hyperphosphorylated tau (P-tau), atrophy, and cognition.
View Article and Find Full Text PDFAnn Clin Transl Neurol
June 2024
Objective: Alzheimer's disease (AD) and cerebral small vessel disease (cSVD), the two most common causes of dementia, are characterized by white matter (WM) alterations diverging from the physiological changes occurring in healthy aging. Diffusion tensor imaging (DTI) is a valuable tool to quantify WM integrity non-invasively and identify the determinants of such alterations. Here, we investigated main effects and interactions of AD pathology, APOE-ε4, cSVD, and cardiovascular risk on spatial patterns of WM alterations in non-demented older adults.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2023
DWI/FLAIR mismatch assessment for ischemic stroke patients shows promising results in determining if patients are eligible for recombinant tissue-type plasminogen activator (r-tPA) treatment. However, the mismatch criteria suffer from two major issues: binary classification of a non-binary problem and the subjectiveness of the assessor. In this article, we present a simple automatic method for segmenting stroke-related parenchymal hyperintensities on FLAIR, allowing for an automatic and continuous DWI/FLAIR mismatch assessment.
View Article and Find Full Text PDFMed Image Anal
January 2024
J Cereb Blood Flow Metab
October 2023
Aging-related cognitive decline can be accelerated by a combination of genetic factors, cardiovascular and cerebrovascular dysfunction, and amyloid-β burden. Whereas cerebral blood flow (CBF) has been studied as a potential early biomarker of cognitive decline, its normal variability in healthy elderly is less known. In this study, we investigated the contribution of genetic, vascular, and amyloid-β components of CBF in a cognitively unimpaired (CU) population of monozygotic older twins.
View Article and Find Full Text PDFAmyloid-β accumulation starts in highly connected brain regions and is associated with functional connectivity alterations in the early stages of Alzheimer's disease. This regional vulnerability is related to the high neuronal activity and strong fluctuations typical of these regions. Recently, dynamic functional connectivity was introduced to investigate changes in functional network organization over time.
View Article and Find Full Text PDFElife
April 2023
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS.
View Article and Find Full Text PDFGray matter networks are altered with amyloid accumulation in the earliest stage of AD, and are associated with decline throughout the AD spectrum. It remains unclear to what extent gray matter network abnormalities are associated with hyperphosphorylated-tau (p-tau). We studied the relationship of cerebrospinal fluid (CSF) p-tau181 with gray matter networks in non-demented participants from the European Prevention of Alzheimer's Dementia (EPAD) cohort, and studied dependencies on amyloid and cognitive status.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
April 2023
Several studies have shown decreased cerebral blood flow (CBF) in Alzheimer's disease (AD). However, the role of hypoperfusion in the disease pathogenesis remains unclear. Combining arterial spin labeling MRI, PET, and CSF biomarkers, we investigated the associations between gray matter (GM)-CBF and the key mechanisms in AD including amyloid-β (Aβ) and tau pathology, synaptic and axonal degeneration.
View Article and Find Full Text PDFBackground: Patients with vascular cognitive impairment (VCI) are very heterogeneous in both symptoms and type of cerebrovascular pathology. This might be an important reason why there is no symptomatic treatment available for VCI patients. In this study, we investigated in patients with VCI, whether there was an association between a positive response to methylphenidate and galantamine and the type of cerebrovascular disease, structural damage to specific neurotransmitter systems, cerebral perfusion, and presence of co-morbid Alzheimer (AD) pathology.
View Article and Find Full Text PDFThe European Prevention of Alzheimer Dementia (EPAD) is a multi-center study that aims to characterize the preclinical and prodromal stages of Alzheimer's Disease. The EPAD imaging dataset includes core (3D T1w, 3D FLAIR) and advanced (ASL, diffusion MRI, and resting-state fMRI) MRI sequences. Here, we give an overview of the semi-automatic multimodal and multisite pipeline that we developed to curate, preprocess, quality control (QC), and compute image-derived phenotypes (IDPs) from the EPAD MRI dataset.
View Article and Find Full Text PDFWhite matter hyperintensities (WMHs) have a heterogeneous aetiology, associated with both vascular risk factors and amyloidosis due to Alzheimer's disease. While spatial distribution of both amyloid and WM lesions carry important information for the underlying pathogenic mechanisms, the regional relationship between these two pathologies and their joint contribution to early cognitive deterioration remains largely unexplored. We included 662 non-demented participants from three Amyloid Imaging to Prevent Alzheimer's disease (AMYPAD)-affiliated cohorts: EPAD-LCS (N = 176), ALFA+ (N = 310), and EMIF-AD PreclinAD Twin60++ (N = 176).
View Article and Find Full Text PDFObjectives: Neurodegeneration in suspected Alzheimer's disease can be determined using visual rating or quantitative volumetric assessments. We examined the feasibility of volumetric measurements of gray matter (GMV) and hippocampal volume (HCV) and compared their diagnostic performance with visual rating scales in academic and non-academic memory clinics.
Materials And Methods: We included 231 patients attending local memory clinics (LMC) in the Netherlands and 501 of the academic Amsterdam Dementia Cohort (ADC).
Accurate and realistic simulation of high-dimensional medical images has become an important research area relevant to many AI-enabled healthcare applications. However, current state-of-the-art approaches lack the ability to produce satisfactory high-resolution and accurate subject-specific images. In this work, we present a deep learning framework, namely 4D-Degenerative Adversarial NeuroImage Net (4D-DANI-Net), to generate high-resolution, longitudinal MRI scans that mimic subject-specific neurodegeneration in ageing and dementia.
View Article and Find Full Text PDFCortical accumulation of amyloid beta is one of the first events of Alzheimer's disease pathophysiology, and has been suggested to follow a consistent spatiotemporal ordering, starting in the posterior cingulate cortex, precuneus and medio-orbitofrontal cortex. These regions overlap with those of the default mode network, a brain network also involved in memory functions. Aberrant default mode network functional connectivity and higher network sparsity have been reported in prodromal and clinical Alzheimer's disease.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
April 2021
Introduction: Amyloid beta (Aβ) accumulation is the first pathological hallmark of Alzheimer's disease (AD), and it is associated with altered white matter (WM) microstructure. We aimed to investigate this relationship at a regional level in a cognitively unimpaired cohort.
Methods: We included 179 individuals from the European Medical Information Framework for AD (EMIF-AD) preclinAD study, who underwent diffusion magnetic resonance (MR) to determine tract-level fractional anisotropy (FA); mean, radial, and axial diffusivity (MD/RD/AxD); and dynamic [F]flutemetamol) positron emission tomography (PET) imaging to assess amyloid burden.