Publications by authors named "Silvia Arossa"

Pelagic particle-associated bacterioplankton play crucial roles in marine ecosystems, influencing biogeochemical cycling and ecosystem functioning. However, their diversity, composition, and dynamics remain poorly understood, particularly in unique environments such as the Red Sea. In this study, we employed eDNA metabarcoding to comprehensively characterise bacterioplankton communities associated with pelagic particles in a three-dimensional assessment spanning depths from the surface to a depth of 2300 m along the full length of the eastern Red Sea within the exclusive economic zone of the Kingdom of Saudi Arabia.

View Article and Find Full Text PDF

Persistent oxygen-depleted zones in the ocean are known primarily from enclosed basins in temperate regions or the open ocean (including oxygen minimum and limiting zones) (1). However, little is known about the possibility of such zones forming in tropical coastal domains, even though the combination of warmer temperatures and complex geological features in some tropical regions makes their occurrence more likely (1, 2). Here, we report two subsurface oxygen-depleted zones within deep (>490 m) depressions of the Red Sea's Difaht Farasan-a carbonate platform hosting the world's third largest contiguous tropical coral reef system.

View Article and Find Full Text PDF

Red Sea elasmobranch populations are facing alarming declines. Effective conservation efforts require management strategies informed by extensive datasets and by developing an understanding of distribution patterns within the basin, which is currently lacking. This study introduces CERSE (Central and Eastern Red Sea Elasmobranchs), a comprehensive compilation of elasmobranch observations in the central and eastern Red Sea basin following the route of the Red Sea Decade Expedition.

View Article and Find Full Text PDF

The characterization, control, and reporting of environmental conditions in mammalian cell cultures is fundamental to ensure physiological relevance and reproducibility in basic and preclinical biomedical research. The potential issue of environment instability in routine cell cultures in affecting biomedical experiments was identified many decades ago. Despite existing evidence showing variable environmental conditions can affect a suite of cellular responses and key experimental readouts, the underreporting of critical parameters affecting cell culture environments in published experiments remains a serious problem.

View Article and Find Full Text PDF

Mammalian cell cultures are a keystone resource in biomedical research, but the results of published experiments often suffer from reproducibility challenges. This has led to a focus on the influence of cell culture conditions on cellular responses and reproducibility of experimental findings. Here, we perform frequent in situ monitoring of dissolved O and CO with optical sensor spots and contemporaneous evaluation of cell proliferation and medium pH in standard batch cultures of three widely used human somatic and pluripotent stem cell lines.

View Article and Find Full Text PDF

This study assesses for the first time the ingestion of microplastics by giant clams and evaluates their importance as a sink for this pollutant. A total of 24 individuals of two size classes were collected from the Red Sea and then exposed for 12 days to 4 concentrations of polyethylene microbeads ranging from 53 to 500 μm. Experiments revealed that clams actively take up microplastic from the water column and the average of beads retained inside the animal was ∼7.

View Article and Find Full Text PDF

In vitro models are emerging tools for reducing reliance on traditional toxicity tests, especially in areas where information is sparse. For studies of fish, this is especially important for extrahepatic organs, such as the intestine, which, until recently, have been largely overlooked in favour of the liver or gill. Considering the importance of dietary uptake of contaminants, the rainbow trout (Oncorhynchus mykiss) intestine-derived cell line RTgutGC was cultured, to test its suitability as a high-throughput in vitro model.

View Article and Find Full Text PDF