Publications by authors named "Silvia Achilli"

Glycodendron microarrays with defined valency have been constructed by on-chip synthesis on hydrophobic indium tin oxide (ITO) coated glass slides and employed in lectin-carbohydrate binding studies with several plant and human lectins. Glycodendrons presenting sugar epitopes at different valencies were prepared by spotwise strain-promoted azide-alkyne cycloaddition (SPAAC) between immobilised cyclooctyne dendrons and azide functionalised glycans. The non-covalent immobilisation of dendrons on the ITO surface by hydrophobic interaction allowed us to study dendron surface density and SPAAC conversion rate by in situ MALDI-TOF MS analysis.

View Article and Find Full Text PDF

Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells. In this review, we aim to highlight the recent advances in the field. We will illustrate the advantages of different ARM approaches and emphasize the importance of a multivalent presentation of the binding units.

View Article and Find Full Text PDF

The recruitment of endogenous antibodies against cancer cells has become a reliable antitumoral immunotherapeutic alternative over the last decade. The covalent attachment of antibody and tumor binding modules (ABM and TBM) within a single, well-defined synthetic molecule was indeed demonstrated to promote the formation of an interacting ternary complex between both the antibodies and the targeted cell, which usually results in the simultaneous immune-mediated cellular destruction. In a preliminary study, we have described the first Antibody Recruiting Glycodendrimers (ARGs), combining cRGD as ligands for the αVβ3-expressing melanoma cell line M21 and Rha as ligand for natural IgM, and demonstrated that multivalency is an essential requirement to form this complex.

View Article and Find Full Text PDF

Herein, we originally aimed at developing fluorescence anisotropy biosensor platforms devoted to the homogeneous-phase detection of isocarbophos and phorate pesticides by using previously isolated DNA aptamers. To achieve this, two reporting approaches displaying very high generalizability features were implemented, based on either the complementary strand or the SYBR green intercalator displacement strategies. Unfortunately, none of the transduction methods led to phorate-dependent signals.

View Article and Find Full Text PDF

The design and synthesis of efficient ligands for DC-SIGN is a topic of high interest, because this C-type lectin has been implicated in the early stages of many infection processes. DC-SIGN membrane-protein presents four carbohydrate-binding domains (CRD) that specifically recognize mannose and fucose. Therefore, antagonists of minimal disaccharide epitope Manα(1,2)Man, represent potentially interesting antibacterial and antiviral agents.

View Article and Find Full Text PDF

Due to their interactions with C-type lectin receptors (CLRs), glycans from the helminth Schistosoma mansoni represent promising leads for treatment of autoimmune diseases, allergies or cancer. We chemo-enzymatically synthesized nine O-glycans based on the two predominant O-glycan cores observed in the infectious stages of schistosomiasis, the mucin core 2 and the S. mansoni core.

View Article and Find Full Text PDF

Langerhans cells (LCs) are antigen-presenting cells that reside in the skin. They uniquely express high levels of the C-type lectin receptor Langerin (CD207), which is an attractive target for antigen delivery in immunotherapeutic vaccination strategies against cancer. We here assess a library of 20 synthetic, well-defined mannoside clusters, built up from one, two, and three of six monomannosides, dimannosides, or trimannosides, appended to an oligopeptide backbone, for binding with Langerin using surface plasmon resonance and flow cytometric quantification.

View Article and Find Full Text PDF

C-type lectin receptor (CLR)/carbohydrate recognition occurs through low affinity interactions. Nature compensates that weakness by multivalent display of the lectin carbohydrate recognition domain (CRD) at the cell surface. Mimicking these low affinity interactions in vitro is essential to better understand CLR/glycan interactions.

View Article and Find Full Text PDF

Dendritic cells (DCs) are important initiators of adaptive immunity, and they possess a multitude of Pattern Recognition Receptors (PRR) to generate an adequate T cell mediated immunity against invading pathogens. PRR ligands are frequently conjugated to tumor-associated antigens in a vaccination strategy to enhance the immune response toward such antigens. One of these PPRs, DC-SIGN, a member of the C-type lectin receptor (CLR) family, has been extensively targeted with Lewis structures and mannose glycans, often presented in multivalent fashion.

View Article and Find Full Text PDF

Chemical modification of pseudo-dimannoside ligands guided by fragment-based design allowed for the exploitation of an ammonium-binding region in the vicinity of the mannose-binding site of DC-SIGN, leading to the synthesis of a glycomimetic antagonist (compound 16) of unprecedented affinity and selectivity against the related lectin langerin. Here, the computational design of pseudo-dimannoside derivatives as DC-SIGN ligands, their synthesis, their evaluation as DC-SIGN selective antagonists, the biophysical characterization of the DC-SIGN/16 complex, and the structural basis for the ligand activity are presented. On the way to the characterization of this ligand, an unusual bridging interaction within the crystals shed light on the plasticity and potential secondary binding sites within the DC-SIGN carbohydrate recognition domain.

View Article and Find Full Text PDF

A library of mannose- and fucose-based glycomimetics was synthesized and screened in a microarray format against a set of C-type lectin receptors (CLRs) that included DC-SIGN, DC-SIGNR, langerin, and dectin-2. Glycomimetic ligands able to interact with dectin-2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.

View Article and Find Full Text PDF

Here, we describe a strategy for the rapid preparation of pure positional isomers of complex N-glycans to complement an existing array comprising a larger number of N-glycans and smaller glycan structures. The expanded array was then employed to study context-dependent binding of structural glycan fragments by monoclonal antibodies and C-type lectins. A partial enzymatic elongation of semiprotected core structures was combined with the protecting-group-aided separation of positional isomers by preparative HPLC.

View Article and Find Full Text PDF

The synthesis and conformational analysis of pseudo-thio-1,2-dimannoside are described. This molecule mimics mannobioside (Manα(1,2)Man) and is an analog of pseudo-1,2-dimannoside, with expected increased stability to enzymatic hydrolysis. A short and efficient synthesis was developed based on an epoxide ring-opening reaction by a mannosyl thiolate, generated in situ from the corresponding thioacetate.

View Article and Find Full Text PDF

Two binding requirements for in vitro studies on long-term neuronal networks dynamics are (i) finely controlled environmental conditions to keep neuronal cultures viable and provide reliable data for more than a few hours and (ii) parallel operation on multiple neuronal cultures to shorten experimental time scales and enhance data reproducibility. In order to fulfill these needs with a Microelectrode Arrays (MEA)-based system, we designed a stand-alone device that permits to uninterruptedly monitor neuronal cultures activity over long periods, overcoming drawbacks of existing MEA platforms. We integrated in a single device: (i) a closed chamber housing four MEAs equipped with access for chemical manipulations, (ii) environmental control systems and embedded sensors to reproduce and remotely monitor the standard in vitro culture environment on the lab bench (i.

View Article and Find Full Text PDF