Objective: The analysis of interactions among local populations of neurons in the cerebral cortex (e.g. within cortical microcolumns) requires high resolution and high channel count recordings from chronically implanted laminar microelectrode arrays.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
December 2019
Although CMOS fabrication has enabled a quick evolution in the design of high-density neural probes and neural-recording chips, the scaling and miniaturization of the complete data-acquisition systems has happened at a slower pace. This is mainly due to the complexity and the many requirements that change depending on the specific experimental settings. In essence, the fundamental challenge of a neural-recording system is getting the signals describing the largest possible set of neurons out of the brain and down to data storage for analysis.
View Article and Find Full Text PDFBackground: The cortical slow (∼1 Hz) oscillation (SO), which is thought to play an active role in the consolidation of memories, is a brain rhythm characteristic of slow-wave sleep, with alternating periods of neuronal activity and silence. Although the laminar distribution of cortical activity during SO is well-studied by using linear neural probes, traditional devices have a relatively low (20-100 μm) spatial resolution along cortical layers.
New Method: In this work, we demonstrate a high-density linear silicon probe fabricated to record the SO with very high spatial resolution (∼6 μm), simultaneously from multiple cortical layers.
In this study, we developed and validated a single-shank silicon-based neural probe with 128 closely-packed microelectrodes suitable for high-resolution extracellular recordings. The 8-mm-long, 100-µm-wide and 50-µm-thick implantable shank of the probe fabricated using a 0.13-µm complementary metal-oxide-semiconductor (CMOS) metallization technology contains square-shaped (20 × 20 µm), low-impedance (~ 50 kΩ at 1 kHz) recording sites made of rough and porous titanium nitride which are arranged in a 32 × 4 dense array with an inter-electrode pitch of 22.
View Article and Find Full Text PDFSilicon neuroprobes hold great potential for studies of large-scale neural activity and brain computer interfaces, but data on brain response in chronic implants is limited. Here we explored with in vivo cellular imaging the response to multisite silicon probes for neural recordings. We tested a chronic implant for mice consisting of a CMOS-compatible silicon probe rigidly implanted in the cortex under a cranial imaging window.
View Article and Find Full Text PDFSensory, motor and cognitive operations involve the coordinated action of large neuronal populations across multiple brain regions in both superficial and deep structures. Existing extracellular probes record neural activity with excellent spatial and temporal (sub-millisecond) resolution, but from only a few dozen neurons per shank. Optical Ca imaging offers more coverage but lacks the temporal resolution needed to distinguish individual spikes reliably and does not measure local field potentials.
View Article and Find Full Text PDFSensors (Basel)
October 2017
We present a high electrode density and high channel count CMOS (complementary metal-oxide-semiconductor) active neural probe containing 1344 neuron sized recording pixels (20 µm × 20 µm) and 12 reference pixels (20 µm × 80 µm), densely packed on a 50 µm thick, 100 µm wide, and 8 mm long shank. The active electrodes or pixels consist of dedicated in-situ circuits for signal source amplification, which are directly located under each electrode. The probe supports the simultaneous recording of all 1356 electrodes with sufficient signal to noise ratio for typical neuroscience applications.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2017
In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.
View Article and Find Full Text PDFJ Neurophysiol
August 2016
The past decade has witnessed an explosive growth in our ability to observe and measure brain activity. Among different functional brain imaging techniques, the electrical measurement of neural activity using neural probes provides highest temporal resolution. Yet, the electrode density and the observability of currently available neural probe technologies fall short of the density of neurons in the brain by several orders of magnitude.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2013
A flexible neural implant was designed and fabricated using an novel integration approach that offers the advantages of both silicon and polymer based implants: high density electrodes and precise insertion on one side and mechanical flexibility suitable for reduced tissue strain due to micro-motion during chronic implantation on the other side. This was achieved by separating the device into silicon or polymer areas, depending on their desired functionality. The tip, where the recording and stimulation electrodes would be placed, was kept of silicon: a choice that doesn't call for any compromise to be made regarding the high density electrode and possible local circuit integration later on.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
September 2013
The signal-to-noise ratio of in vivo extracellular neural recordings with microelectrodes is influenced by many factors including the impedance of the electrode-tissue interface, the noise of the recording equipment and biological background noise from distant neurons. In this work we study the different noise sources affecting the quality of neural signals. We propose a simplified noise model as an analytical tool to predict the noise of an electrode given its geometrical dimensions and impedance characteristics.
View Article and Find Full Text PDFMed Biol Eng Comput
April 2013
Simultaneous electrical stimulation and recording are used to gain insights into the function of neuronal circuitry. However, artifacts produced by the electrical stimulation pulses prevent the recording of neural responses during, and a short period after, the stimulation duration. In this work, we describe a mixed-signal recording topology with template subtraction for removing the artifact during the stimulation pulse.
View Article and Find Full Text PDFThe reliable integration of carbon nanotube (CNT) electrodes in future neural probes requires a proper embedding of the CNTs to prevent damage and toxic contamination during fabrication and also to preserve their mechanical integrity during implantation. Here we describe a novel bottom-up embedding approach where the CNT microelectrodes are encased in SiO(2) and Parylene C with lithographically defined electrode openings. Vertically aligned CNTs are grown on microelectrode arrays using low-temperature plasma-enhanced chemical vapor deposition compatible with wafer-scale CMOS processing.
View Article and Find Full Text PDFThe electrochemistry of 50 μm diameter Pt electrodes used for neural stimulation was studied in vitro by reciprocal derivative chronopotentiometry. This differential method provides well-defined electrochemical signatures of the various polarization phenomena that occur at Pt microelectrodes and are generally obscured in voltage transients. In combination with a novel in situ coulometric approach, irreversible H(2) and O(2) evolution, Pt dissolution and reduction of dissolved O(2) were detected.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
Closed loop systems, in which stimulation parameters are adjusted according to recorded signals would reduce the occurrence of side effects of stimulation and broaden current therapeutic options. As a step towards a closed-loop clinical system, we developed a single electrode stimulation / recording system for an in vitro microelectrode array. The system was used in vitro to simultaneously stimulate and record cardiac cells.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
March 2011
We used reciprocal derivative chronopotentiometry (RDC) with platinum electrodes of 50 microm diameter in 0.15 M phosphate buffered saline solution to identify the various electrochemical processes occurring at the electrode during biphasic current pulsing. RDC allowed to determine the limits of water hydrolysis based on the specific (dt/dE)-E data representation employed in this technique resulting in curves similar to the voltammetric i-E response.
View Article and Find Full Text PDF