Publications by authors named "Shu-Chun Wu"

Background/purpose: Interfacility transfer (IFT) in Asian communities is seldom discussed. We aimed to describe the characteristics of IFT in Taiwan and to explore the adequacy of care during transfer.

Methods: A retrospective, cross-sectional, descriptive study was conducted using standardized, paper-based interfacility ambulance transfer records between 1 January 2018 and 31 January 2018 from Tainan City, Taiwan.

View Article and Find Full Text PDF

Topological materials ranging from topological insulators to Weyl and Dirac semimetals form one of the most exciting current fields in condensed-matter research. Many half-Heusler compounds, RPtBi (R = rare earth), have been theoretically predicted to be topological semimetals. Among various topological attributes envisaged in RPtBi, topological surface states, chiral anomaly, and planar Hall effect have been observed experimentally.

View Article and Find Full Text PDF

Bismuth, one of the heaviest semimetals in nature, ignited the interest of the materials physics community for its potential impact on topological quantum material systems that use its strong spin-orbit coupling and unique orbital hybridization. In particular, recent theoretical predictions of unique topological and superconducting properties of thin bismuth films and interfaces prompted intense research on the growth of submonolayers to a few monolayers of bismuth on different substrates. Similar to bulk rhombohedral bismuth, the initial growth of bismuth films on most substrates results in buckled bilayers that grow in either the (111) or (110) directions, with a lattice constant close to that of bulk Bi.

View Article and Find Full Text PDF

The topological phases of matter provide the opportunity to observe many exotic properties, such as the existence of 2D topological surface states in the form of Dirac cones in topological insulators and chiral transport through the open Fermi arc in Weyl semimetals. However, these properties affect the transport characteristics and, therefore, may be useful for applications only if the topological phenomena occur near the Fermi level. CaAgAs is a promising candidate for which the ab initio calculations predict line-nodes at the Fermi energy.

View Article and Find Full Text PDF

NbP is a recently realized Weyl semimetal (WSM), hosting Weyl points through which conduction and valence bands cross linearly in the bulk and exotic Fermi arcs appear. The most intriguing transport phenomenon of a WSM is the chiral anomaly-induced negative magnetoresistance (NMR) in parallel electric and magnetic fields. In intrinsic NbP the Weyl points lie far from the Fermi energy, making chiral magneto-transport elusive.

View Article and Find Full Text PDF

The rare-earth monopnictide LaBi exhibits exotic magneto-transport properties, including an extremely large and anisotropic magnetoresistance. Experimental evidence for topological surface states is still missing although band inversions have been postulated to induce a topological phase in LaBi. In this work, we have revealed the existence of surface states of LaBi through the observation of three Dirac cones: two coexist at the corners and one appears at the centre of the Brillouin zone, by employing angle-resolved photoemission spectroscopy in conjunction with ab initio calculations.

View Article and Find Full Text PDF

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined.

View Article and Find Full Text PDF

Transition metal dichalcogenides have attracted research interest over the last few decades due to their interesting structural chemistry, unusual electronic properties, rich intercalation chemistry and wide spectrum of potential applications. Despite the fact that the majority of related research focuses on semiconducting transition-metal dichalcogenides (for example, MoS2), recently discovered unexpected properties of WTe2 are provoking strong interest in semimetallic transition metal dichalcogenides featuring large magnetoresistance, pressure-driven superconductivity and Weyl semimetal states. We investigate the sister compound of WTe2, MoTe2, predicted to be a Weyl semimetal and a quantum spin Hall insulator in bulk and monolayer form, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • The quantum anomalous Hall effect has been achieved in a magnetic topological insulator but requires extremely low temperatures, complicating practical use.
  • Researchers propose using honeycomb structures made of Sn and Ge that can support a large energy gap and a ferromagnetic order achieved through surface functionalization.
  • The estimated Curie temperatures for these lattices are significantly higher than previously used materials, suggesting that the quantum anomalous Hall effect could be realized at or near room temperature.
View Article and Find Full Text PDF

We predict a family of robust two-dimensional (2D) topological insulators in van der Waals heterostructures comprising graphene and chalcogenides BiTeX (X = Cl, Br, and I). The layered structures of both constituent materials produce a naturally smooth interface that is conducive to proximity-induced topological states. First-principles calculations reveal intrinsic topologically nontrivial bulk energy gaps as large as 70-80 meV, which can be further enhanced up to 120 meV by compression.

View Article and Find Full Text PDF

Topological insulators (TIs) represent a new quantum state of matter characterized by robust gapless states inside the insulating bulk gap. The metallic edge states of a two-dimensional (2D) TI, known as the quantum spin Hall (QSH) effect, are immune to backscattering and carry fully spin-polarized dissipationless currents. However, existing 2D TIs realized in HgTe and InAs/GaSb suffer from small bulk gaps (<10 meV) well below room temperature, thus limiting their application in electronic and spintronic devices.

View Article and Find Full Text PDF

We investigate the structural stability and magnetic properties of the cubic, tetragonal and hexagonal phases of Mn3Z (Z=Ga, Sn and Ge) Heusler compounds using first-principles density-functional theory. We propose that the cubic phase plays an important role as an intermediate state in the phase transition from the hexagonal to the tetragonal phases. Consequently, Mn3Ga and Mn3Ge behave differently from Mn3Sn, because the relative energies of the cubic and hexagonal phases are different.

View Article and Find Full Text PDF

Programmed cell death (apoptosis) is essential for the development and homeostasis of metazoans. The central step in the execution of programmed cell death is the activation of caspases. In C.

View Article and Find Full Text PDF

Introduction: Sleep disturbances and cardiovascular autonomic dysfunction are major complications of hemodialysis (HD). The goal of this study is to identify clinical, heart rate variability (HRV) or laboratory parameters that are independently associated with subjective sleep quality.

Patient And Methods: Forty-six stable HD patients filled out sleep questionnaires - Pittsburgh sleep quality index (PSQI), Athens insomnia scale (AIS), and Epworth sleepiness scale (ESS).

View Article and Find Full Text PDF