Publications by authors named "Shravan Thaploo"

Current treatments for paraplegia induced by spinal cord injury (SCI) are often limited by the severity of the injury. The accompanying loss of sensory and motor functions often results in reliance on wheelchairs, which in turn causes reduced quality of life and increased risk of co-morbidities. While brain-computer interfaces (BCIs) for ambulation have shown promise in restoring or replacing lower extremity motor functions, none so far have simultaneously implemented sensory feedback functions.

View Article and Find Full Text PDF

The failure of human neuronal stem cells to integrate with brain tissue suggests the need to provide functional cues to modify and re-organize the existing naive network. Understanding how human neural networks respond to external stimuli is crucial to realizing this goal. Here, we stimulate a human induced pluripotent stem cell (hIPSC)-derived neural network on a microelectrode array in a Hebbian fashion to explore the resulting network changes.

View Article and Find Full Text PDF

In-vitro models of neuronal networks have become a powerful tool for modeling network activity in the human brain. The exploration of network properties has largely been made possible via microelectrode arrays (MEAs). However, addressing certain tissue engineering challenges remains imperative for their long-term utilization.

View Article and Find Full Text PDF

Rare cells have an important role in development and disease, and methods for isolating and studying cell subsets are therefore an essential part of biology research. Such methods traditionally rely on labeled antibodies targeted to cell surface proteins, but large public databases and sophisticated computational approaches increasingly define cell subsets on the basis of genomic, epigenomic and transcriptomic sequencing data. Methods for isolating cells on the basis of nucleic acid sequences powerfully complement these approaches by providing experimental access to cell subsets discovered in cell atlases, as well as those that cannot be otherwise isolated, including cells infected with pathogens, with specific DNA mutations or with unique transcriptional or splicing signatures.

View Article and Find Full Text PDF

Rare CD4 T cells that contain HIV under antiretroviral therapy represent an important barrier to HIV cure, but the infeasibility of isolating and characterizing these cells in their natural state has led to uncertainty about whether they possess distinctive attributes that HIV cure-directed therapies might exploit. Here we address this challenge using a microfluidic technology that isolates the transcriptomes of HIV-infected cells based solely on the detection of HIV DNA. HIV-DNA memory CD4 T cells in the blood from people receiving antiretroviral therapy showed inhibition of six transcriptomic pathways, including death receptor signalling, necroptosis signalling and antiproliferative Gα12/13 signalling.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory disease of the central nervous system. Astrocytes are heterogeneous glial cells that are resident in the central nervous system and participate in the pathogenesis of multiple sclerosis and its model experimental autoimmune encephalomyelitis. However, few unique surface markers are available for the isolation of astrocyte subsets, preventing their analysis and the identification of candidate therapeutic targets; these limitations are further amplified by the rarity of pathogenic astrocytes.

View Article and Find Full Text PDF

Analyzing every cell in a diverse sample provides insight into population-level heterogeneity, but abundant cell types dominate the analysis and rarer populations are scarcely represented in the data. To focus on specific cell types, the current paradigm is to physically isolate subsets of interest prior to analysis; however, it remains difficult to isolate and then single-cell sequence such populations because of compounding losses. Here, we describe an alternative approach that selectively merges cells with reagents to achieve enzymatic reactions without having to physically isolate cells.

View Article and Find Full Text PDF

Multiple sclerosis is a chronic inflammatory disease of the CNS. Astrocytes contribute to the pathogenesis of multiple sclerosis, but little is known about the heterogeneity of astrocytes and its regulation. Here we report the analysis of astrocytes in multiple sclerosis and its preclinical model experimental autoimmune encephalomyelitis (EAE) by single-cell RNA sequencing in combination with cell-specific Ribotag RNA profiling, assay for transposase-accessible chromatin with sequencing (ATAC-seq), chromatin immunoprecipitation with sequencing (ChIP-seq), genome-wide analysis of DNA methylation and in vivo CRISPR-Cas9-based genetic perturbations.

View Article and Find Full Text PDF