Publications by authors named "Shogo Okuda"

We report the helix-sense-selective memory polymerization (HSMP) of achiral biphenylylacetylenes bearing carboxy and amino pendant groups in the presence of basic and acidic chiral guests in water, respectively. The HSMP proceeds in a highly helix-sense-selective manner driven by noncovalent chiral ionic interactions between the monomers and guests under kinetic control, producing the one-handed helical polymers with a static memory of helicity in one-pot during the polymerization in a very short time, accompanied by amplification of asymmetry. The carboxy-bound helicity-memorized polymer self-assembles into a cholesteric liquid crystal in concentrated water, in which a variety of basic achiral fluorophores further co-assembles to form supramolecular helical aggregates that exhibit an induced circularly polarized luminescence in a color tunable manner.

View Article and Find Full Text PDF

A 72-year-old man with chronic obstructive pulmonary disease (COPD) was admitted for coronavirus disease 2019 (COVID-19). He was discharged on day 30; however, he was readmitted 6 days later due to a left lung organizing pneumonia secondary to COVID-19. After methylprednisolone treatment, the patient was discharged on day 15.

View Article and Find Full Text PDF

We report unique coordination-driven supramolecular helical assemblies of a series of dirhodium(II) tetracarboxylate paddlewheels bearing chiral phenyl- or methyl-substituted amide-bound -terphenyl residues with triethylene glycol monomethyl ether (TEG) or -dodecyl tails through a 1:1 complexation with 1,4-diazabicyclo[2.2.2]octane (DABCO).

View Article and Find Full Text PDF

Two novel poly(biphenylylacetylene)s (PBPAs) bearing achiral alkylphenyl groups at the 4'-position of the biphenyl pendant through ester linkers with different sequences were synthesized by the rhodium-catalyzed polymerization of the corresponding monomers. The influence of the alkylphenyl pendants and the ester sequences on the macromolecular helicity induction and subsequent static helicity memory was investigated. In addition, the chiral recognition ability as chiral stationary phases for high-performance liquid chromatography of the helicity-memorized PBPAs was also examined.

View Article and Find Full Text PDF

A racemic monomer-based optically inactive polyacetylene folds into a one-handed helix assisted by a nonracemic alcohol, which can separate various enantiomers as a chiral stationary phase in chromatography. The chiral-resolving power is virtually identical to that of the enantiopure monomer-based one-handed helical polyacetylene. Because of its unique static memory of the induced helicity, the original racemic polyacetylene expresses an auto-evolution of its helical handedness over time, and at the same time, chirality of the nonracemic alcohol is discriminated accompanied by successive enhancement of its optical purity enantioselectively adsorbed on the helical polyacetylene owing to the chiral filter effect as directly monitored by NMR, which contributes to further enhancing the helix-sense-excess of the helical polyacetylene.

View Article and Find Full Text PDF