RIKEN covers fundamental research on physics, chemistry, biology, life and medical science, information and mathematical science, and engineering. Here, we outline research activities on quantum materials and quantum technology that include topological and correlated materials, spintronics, nanoscale materials and structures, atomic and quantum optics, and quantum computing.
View Article and Find Full Text PDFThermoelectric technologies are becoming indispensable in the quest for a sustainable future. Recently, an emerging phenomenon, the spin-driven thermoelectric effect (STE), has garnered much attention as a promising path towards low cost and versatile thermoelectric technology with easily scalable manufacturing. However, progress in development of STE devices is hindered by the lack of understanding of the fundamental physics and materials properties responsible for the effect.
View Article and Find Full Text PDFAdvances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD).
View Article and Find Full Text PDFNat Mater
June 2012
Energy harvesting technologies, which generate electricity from environmental energy, have been attracting great interest because of their potential to power ubiquitously deployed sensor networks and mobile electronics. Of these technologies, thermoelectric (TE) conversion is a particularly promising candidate, because it can directly generate electricity from the thermal energy that is available in various places. Here we show a novel TE concept based on the spin Seebeck effect, called 'spin-thermoelectric (STE) coating', which is characterized by a simple film structure, convenient scaling capability, and easy fabrication.
View Article and Find Full Text PDF