Bioengineering (Basel)
August 2025
Two-dimensional cell culture systems lack the ability to replicate the complex, three-dimensional (3D) architecture and cellular microenvironments found in vivo. Multicellular spheroids (MCSs) present a promising alternative, with the ability to mimic native cell-cell and cell-matrix interactions and provide 3D architectures similar to in vivo conditions. These factors are critical for various biomedical applications, including cancer research, tissue engineering, and drug discovery and development.
View Article and Find Full Text PDFBioengineering (Basel)
March 2025
To mimic the important features of progressing adiposity, in vitro adipose cell culture models must allow gradual intracellular fat accumulation in the three-dimensional (3D) arrangement of adipose-derived stem cells (ASCs) over a long-term culture period. Previously, elastin-like polypeptide (ELP) and polyethyleneimine (PEI) have been used to culture human adipose-derived stem cells (hASCs) as 3D spheroids and to differentiate them to adipocytes over a relatively long culture period of up to 5 weeks. In this study, to further enhance the spheroid adhesion properties, ELP was fused with Arginine-Glycine-Aspartic Acid (RGD) residues, known for their role as cell-attachment sites.
View Article and Find Full Text PDFTitanium has a long history of clinical use, but the naturally forming oxide is not ideal for bacterial resistance. Anodization processes can modify the crystallinity, surface topography, and surface chemistry of titanium oxides. Anatase, rutile, and mixed phase oxides are known to exhibit photocatalytic activity (PCA)-driven bacterial resistance under UVA irradiation.
View Article and Find Full Text PDFClinical and basic science applications using adipose-derived stem cells (ADSCs) are gaining popularity. The current adipose tissue harvesting procedures introduce nonphysiological conditions, which may affect the overall performance of the isolated ADSCs. In this study, we elucidate the differences between ADSCs isolated from adipose tissues harvested within the first 5 min of the initial surgical incision (well-vascularized, nonpremedicated condition) versus those isolated from adipose tissues subjected to medications and deprived of blood supply during elective free flap procedures (ischemic condition).
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
May 2023
Titanium anodization has been shown to produce crystalline oxides exhibiting photocatalytic reactions that form reactive oxygen species (ROS) when exposed to UV light. The ROS subsequently attack bacteria cells, and thus reduce bacteria attachment on titanium implant surfaces. Polyaniline (PANI) is a conductive polymer that has shown antibacterial properties when electropolymerized onto titanium.
View Article and Find Full Text PDFCrystalline titanium oxides have shown photocatalytic activity (PCA) and the formation of antibacterial reactive oxygen species (ROS) when stimulated with UV light. Polyaniline (PANI) is a conductive polymer that has shown antibacterial effects. Previously, titanium oxides have been PANI-doped using a multi-step approach.
View Article and Find Full Text PDFFor a number of clinical applications, Ti6Al4V implants with bioactive coatings are used. However, the deposition of a functional polymeric coating with desired physical properties, biocompatibility, and long-term stability remains largely unexplored. Among widely investigated synthetic biomaterials, polyvinylidene fluoride (PVDF) with β-polymorph and barium titanate (BaTiO, BT) are considered as good examples of piezo-biopolymers and bioceramics, respectively.
View Article and Find Full Text PDF