Universal differential equations (UDEs) are an emerging approach in biomedical systems biology, integrating physiology-driven mathematical models with machine learning for data-driven model discovery in areas where knowledge of the underlying physiology is limited. However, current approaches to training UDEs do not directly accommodate heterogeneity in the underlying data. As a data-driven approach, UDEs are also vulnerable to overfitting and consequently cannot sufficiently generalize to heterogeneous populations.
View Article and Find Full Text PDFThe study investigated the diurnal variance in metabolic resilience (i.e., the robustness, the recovery, and reorientation of metabolism) and metabolic flexibility in glucose and fat oxidation rates to three identical test meals.
View Article and Find Full Text PDFSystems biology tackles the challenge of understanding the high complexity in the internal regulation of homeostasis in the human body through mathematical modelling. These models can aid in the discovery of disease mechanisms and potential drug targets. However, on one hand the development and validation of knowledge-based mechanistic models is time-consuming and does not scale well with increasing features in medical data.
View Article and Find Full Text PDFContinuous glucose monitoring (CGM) is a promising, minimally invasive alternative to plasma glucose measurements for calibrating physiology-based mathematical models of insulin-regulated glucose metabolism, reducing the reliance on in-clinic measurements. However, the use of CGM glucose, particularly in combination with insulin measurements, to develop personalized models of glucose regulation remains unexplored. Here, we simultaneously measured interstitial glucose concentrations using CGM as well as plasma glucose and insulin concentrations during an oral glucose tolerance test (OGTT) in individuals with overweight or obesity to calibrate personalized models of glucose-insulin dynamics.
View Article and Find Full Text PDFThe manifestation of metabolic deteriorations that accompany overweight and obesity can differ greatly between individuals, giving rise to a highly heterogeneous population. This inter-individual variation can impede both the provision and assessment of nutritional interventions as multiple aspects of metabolic health should be considered at once. Here, we apply the Mixed Meal Model, a physiology-based computational model, to characterize an individual's metabolic health A population of 342 personalized models were generated using data for individuals with overweight and obesity from three independent intervention studies, demonstrating a strong relationship between the model-derived metric of insulin resistance (ρ = 0.
View Article and Find Full Text PDFThe liver is the primary site for the metabolism and detoxification of many compounds, including pharmaceuticals. Consequently, it is also the primary location for many adverse reactions. As the liver is not readily accessible for sampling in humans; rodent or cell line models are often used to evaluate potential toxic effects of a novel compound or candidate drug.
View Article and Find Full Text PDFComputational models of human glucose homeostasis can provide insight into the physiological processes underlying the observed inter-individual variability in glucose regulation. Modelling approaches ranging from "bottom-up" mechanistic models to "top-down" data-driven techniques have been applied to untangle the complex interactions underlying progressive disturbances in glucose homeostasis. While both approaches offer distinct benefits, a combined approach taking the best of both worlds has yet to be explored.
View Article and Find Full Text PDFThe intricate dependency structure of biological "omics" data, particularly those originating from longitudinal intervention studies with frequently sampled repeated measurements renders the analysis of such data challenging. The high-dimensionality, inter-relatedness of multiple outcomes, and heterogeneity in the studied systems all add to the difficulty in deriving meaningful information. In addition, the subtle differences in dynamics often deemed meaningful in nutritional intervention studies can be particularly challenging to quantify.
View Article and Find Full Text PDFCurrent computational models of whole-body glucose homeostasis describe physiological processes by which insulin regulates circulating glucose concentrations. While these models perform well in response to oral glucose challenges, interaction with other nutrients that impact postprandial glucose metabolism, such as amino acids (AAs), is not considered. Here, we developed a computational model of the human glucose-insulin system, which incorporates the effects of AAs on insulin secretion and hepatic glucose production.
View Article and Find Full Text PDFDespite the pivotal role played by elevated circulating triglyceride levels in the pathophysiology of cardio-metabolic diseases many of the indices used to quantify metabolic health focus on deviations in glucose and insulin alone. We present the Mixed Meal Model, a computational model describing the systemic interplay between triglycerides, free fatty acids, glucose, and insulin. We show that the Mixed Meal Model can capture deviations in the post-meal excursions of plasma glucose, insulin, and triglyceride that are indicative of features of metabolic resilience; quantifying insulin resistance and liver fat; validated by comparison to gold-standard measures.
View Article and Find Full Text PDFLittle is known about gene regulation by fasting in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from 11 volunteers 2 and 26 h after consumption of a standardized meal.
View Article and Find Full Text PDFIn clinical trials, animal and cell line models are often used to evaluate the potential toxic effects of a novel compound or candidate drug before progressing to human trials. However, relating the results of animal and in vitro model exposures to relevant clinical outcomes in the human in vivo system still proves challenging, relying on often putative orthologs. In recent years, multiple studies have demonstrated that the repeated dose rodent bioassay, the current gold standard in the field, lacks sufficient sensitivity and specificity in predicting toxic effects of pharmaceuticals in humans.
View Article and Find Full Text PDFGiven the association of disturbances in non-esterified fatty acid (NEFA) metabolism with the development of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease, computational models of glucose-insulin dynamics have been extended to account for the interplay with NEFA. In this study, we use arteriovenous measurement across the subcutaneous adipose tissue during a mixed meal challenge test to evaluate the performance and underlying assumptions of three existing models of adipose tissue metabolism and construct a new, refined model of adipose tissue metabolism. Our model introduces new terms, explicitly accounting for the conversion of glucose to glyceraldehye-3-phosphate, the postprandial influx of glycerol into the adipose tissue, and several physiologically relevant delays in insulin signalling in order to better describe the measured adipose tissues fluxes.
View Article and Find Full Text PDFThe Muscle Insulin Sensitivity Index (MISI) has been developed to estimate muscle-specific insulin sensitivity based on oral glucose tolerance test (OGTT) data. To date, the score has been implemented with considerable variation in literature and initial positive evaluations were not reproduced in subsequent studies. In this study, we investigate the computation of MISI on oral OGTT data with differing sampling schedules and aim to standardise and improve its calculation.
View Article and Find Full Text PDF