Publications by authors named "Sharon A Robinson"

Human-caused climate change worsens with every increment of additional warming, although some impacts can develop abruptly. The potential for abrupt changes is far less understood in the Antarctic compared with the Arctic, but evidence is emerging for rapid, interacting and sometimes self-perpetuating changes in the Antarctic environment. A regime shift has reduced Antarctic sea-ice extent far below its natural variability of past centuries, and in some respects is more abrupt, non-linear and potentially irreversible than Arctic sea-ice loss.

View Article and Find Full Text PDF

Long-term observations are essential for ecological research, providing insights into species and ecosystem variability, processes, and responses to change. In a time of rapid global change, ecosystem modification, and emerging threats, such long-term monitoring (LTM) is increasingly important. Antarctica is experiencing an unprecedented change that is potentially challenging for its uniquely adapted flora and fauna.

View Article and Find Full Text PDF

Uncrewed aerial vehicles (UAVs) have become essential for remote sensing in extreme environments like Antarctica, but detecting moss and lichen using conventional red, green, blue (RGB) and multispectral sensors remains challenging. This study investigates the potential of hyperspectral imaging (HSI) for mapping cryptogamic vegetation and presents a workflow combining UAVs, ground observations, and machine learning (ML) classifiers. Data collected during a 2023 summer expedition to Antarctic Specially Protected Area 135, East Antarctica, were used to evaluate 12 configurations derived from five ML models, including gradient boosting (XGBoost, CatBoost) and convolutional neural networks (CNNs) (G2C-Conv2D, G2C-Conv3D, and UNet), tested with full and light input feature sets.

View Article and Find Full Text PDF

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) addresses the interacting effects of changes in stratospheric ozone, solar ultraviolet (UV) radiation, and climate on the environment and human health. These include new modelling studies that confirm the benefits of the Montreal Protocol in protecting the stratospheric ozone layer and its role in maintaining a stable climate, both at low and high latitudes. We also provide an update on projected levels of solar UV-radiation during the twenty-first century.

View Article and Find Full Text PDF

Antarctica is one of Earth's most untouched, inhospitable, and poorly known regions. Although knowledge of its biodiversity has increased over recent decades, a diverse, wide-ranging, and spatially explicit compilation of the biodiversity that inhabits Antarctica's permanently ice-free areas is unavailable. This absence hinders both Antarctic biodiversity research and the integration of Antarctica in global biodiversity-related studies.

View Article and Find Full Text PDF

Antarctica, Earth's least understood and most remote continent, is threatened by human disturbances and climate-related changes, underscoring the imperative for biodiversity inventories to inform conservation. Antarctic ecosystems support unique species and genetic diversity, deliver essential ecosystem services and contribute to planetary stability. We present Antarctica's first comprehensive ecosystem classification and map of ice-free lands, which host most of the continent's biodiversity.

View Article and Find Full Text PDF

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover.

View Article and Find Full Text PDF

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.

View Article and Find Full Text PDF

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans.

View Article and Find Full Text PDF

Vegetation in East Antarctica, such as moss and lichen, vulnerable to the effects of climate change and ozone depletion, requires robust non-invasive methods to monitor its health condition. Despite the increasing use of unmanned aerial vehicles (UAVs) to acquire high-resolution data for vegetation analysis in Antarctic regions through artificial intelligence (AI) techniques, the use of multispectral imagery and deep learning (DL) is quite limited. This study addresses this gap with two pivotal contributions: (1) it underscores the potential of deep learning (DL) in a field with notably limited implementations for these datasets; and (2) it introduces an innovative workflow that compares the performance between two supervised machine learning (ML) classifiers: Extreme Gradient Boosting (XGBoost) and U-Net.

View Article and Find Full Text PDF

The world's forests store large amounts of carbon (C), and growing forests can reduce atmospheric CO by storing C in their biomass. This has provided the impetus for world-wide tree planting initiatives to offset fossil-fuel emissions. However, forests interact with their environment in complex and multifaceted ways that must be considered for a balanced assessment of the value of planting trees.

View Article and Find Full Text PDF

The Antarctic environment is extremely cold, windy and dry. Ozone depletion has resulted in increasing ultraviolet-B radiation, and increasing greenhouse gases and decreasing stratospheric ozone have altered Antarctica's climate. How do mosses thrive photosynthetically in this harsh environment? Antarctic mosses take advantage of microclimates where the combination of protection from wind, sufficient melt water, nutrients from seabirds and optimal sunlight provides both photosynthetic energy and sufficient warmth for efficient metabolism.

View Article and Find Full Text PDF

Antarctic terrestrial biodiversity faces multiple threats, from invasive species to climate change. Yet no large-scale assessments of threat management strategies exist. Applying a structured participatory approach, we demonstrate that existing conservation efforts are insufficient in a changing world, estimating that 65% (at best 37%, at worst 97%) of native terrestrial taxa and land-associated seabirds are likely to decline by 2100 under current trajectories.

View Article and Find Full Text PDF

Successful conservation of threatened species and ecosystems in a rapidly changing world requires scientifically sound decision-making tools that are readily accessible to conservation practitioners. Physiological applications that examine how plants and animals interact with their environment are now widely used when planning, implementing and monitoring conservation. Among these tools, stable-isotope physiology is a potentially powerful, yet under-utilized cornerstone of current and future conservation efforts of threatened and endangered plants.

View Article and Find Full Text PDF

Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.

View Article and Find Full Text PDF

Polar landscapes and their unique biodiversity are threatened by climate change. Wild reindeer are cultural and ecological keystone species, traversing across the northern Eurasian Arctic throughout the year (Wild reindeer in the sub-Arctic in Kuhmo, Finland. Photo: Antti Leinonen, Snowchange Cooperative.

View Article and Find Full Text PDF

Antarctic biodiversity faces an unknown future with a changing climate. Most terrestrial biota is restricted to limited patches of ice-free land in a sea of ice, where they are adapted to the continent's extreme cold and wind and exploit microhabitats of suitable conditions. As temperatures rise, ice-free areas are predicted to expand, more rapidly in some areas than others.

View Article and Find Full Text PDF

Bryophytes are the group of land plants with the lowest photosynthetic rates, which was considered to be a consequence of their higher anatomical CO2 diffusional limitation compared with tracheophytes. However, the most recent studies assessing limitations due to biochemistry and mesophyll conductance in bryophytes reveal discrepancies based on the methodology used. In this study, we compared data calculated from two different methodologies for estimating mesophyll conductance: variable J and the curve-fitting method.

View Article and Find Full Text PDF
Article Synopsis
  • Research discusses how current global climate models are based on air temperatures but fail to capture the soil temperatures beneath vegetation where many species thrive.
  • New global maps present soil temperature and bioclimatic variables at 1-km resolution for specific depths, revealing that mean annual soil temperatures can differ significantly from air temperatures by up to 10°C.
  • The findings indicate that relying on air temperature could misrepresent climate impacts on ecosystems, especially in colder regions, highlighting the need for more precise soil temperature data for ecological studies.
View Article and Find Full Text PDF

The Montreal Protocol and its Amendments have been highly effective in protecting the stratospheric ozone layer, preventing global increases in solar ultraviolet-B radiation (UV-B; 280-315 nm) at Earth's surface, and reducing global warming. While ongoing and projected changes in UV-B radiation and climate still pose a threat to human health, food security, air and water quality, terrestrial and aquatic ecosystems, and construction materials and fabrics, the Montreal Protocol continues to play a critical role in protecting Earth's inhabitants and ecosystems by addressing many of the United Nations Sustainable Development Goals.

View Article and Find Full Text PDF
Article Synopsis
  • - Environmental change and biodiversity loss present significant challenges for conservationists, emphasizing the need for strong scientific evidence to guide effective decision-making.
  • - Conservation Physiology offers a framework to understand population declines, predict environmental responses, and test conservation strategies across various species and ecosystems.
  • - The text outlines 10 priority research themes with 100 specific questions that aim to address key conservation issues, such as adaptation, human-wildlife interactions, and pollution, ultimately to enhance the management of biological resources.
View Article and Find Full Text PDF

Induction of non-photochemical quenching (NPQ) of chlorophyll fluorescence in leaves affords photoprotection to the photosynthetic apparatus when, for whatever reason, photon capture in the antennae of photosystems exceeds their capacity to utilise this excitation in photochemistry and ultimately in CO2 assimilation. Here we augment traditional monitoring of NPQ using the fast time resolution, remote and relatively non-intrusive light induced fluorescence transient (LIFT) technique (Kolber et al . 2005 ; Osmond et al .

View Article and Find Full Text PDF

Globally, collapse of ecosystems-potentially irreversible change to ecosystem structure, composition and function-imperils biodiversity, human health and well-being. We examine the current state and recent trajectories of 19 ecosystems, spanning 58° of latitude across 7.7 M km , from Australia's coral reefs to terrestrial Antarctica.

View Article and Find Full Text PDF

Biogeographic patterns of globally widespread species are expected to reflect regional structure, as well as connectivity caused by occasional long-distance dispersal. We assessed the level and drivers of population structure, connectivity, and timescales of population isolation in one of the most widespread and ruderal plants in the world - the common moss . We applied phylogenetic, population genetic, and molecular dating analyses to a global (n = 147) sampling data set, using three chloroplast loci and one nuclear locus.

View Article and Find Full Text PDF