Data that is collected at the individual-level from mobile phones is typically aggregated to the population-level for privacy reasons. If we are interested in answering questions regarding the mean, or working with groups appropriately modeled by a continuum, then this data is immediately informative. However, coupling such data regarding a population to a model that requires information at the individual-level raises a number of complexities.
View Article and Find Full Text PDFWe propose a robust algorithm for constructing first return maps of dynamical systems from time series without the need for embedding. A first return map is typically constructed using a convenient heuristic (maxima or zero-crossings of the time series, for example) or a computationally nuanced geometric approach (explicitly constructing a Poincaré section from a hyper-surface normal to the flow and then interpolating to determine intersections with trajectories). Our method is based on ordinal partitions of the time series, and the first return map is constructed from successive intersections with specific ordinal sequences.
View Article and Find Full Text PDFWe study swarms as dynamical systems for reservoir computing (RC). By example of a modified Reynolds boids model, the specific symmetries and dynamical properties of a swarm are explored with respect to a nonlinear time-series prediction task. Specifically, we seek to extract meaningful information about a predator-like driving signal from the swarm's response to that signal.
View Article and Find Full Text PDFTo understand the collective motion of many individuals, we often rely on agent-based models with rules that may be computationally complex and involved. For biologically inspired systems in particular, this raises questions about whether the imposed rules are necessarily an accurate reflection of what is being followed. The basic premise of updating one's state according to some underlying motivation is well suited to the realm of reservoir computing; however, entire swarms of individuals are yet to be tasked with learning movement in this framework.
View Article and Find Full Text PDFThe selfish herd hypothesis provides an explanation for group aggregation via the selfish avoidance of predators. Conceptually, and as was first proposed, this movement should aim to minimise the danger domain of each individual. Whilst many reasonable proxies have been proposed, none have directly sought to reduce the danger domain.
View Article and Find Full Text PDFSensors (Basel)
February 2019
Positioning and tracking a moving target from limited positional information is a frequently-encountered problem. For given noisy observations of the target's position, one wants to estimate the true trajectory and reconstruct the full phase space including velocity and acceleration. The shadowing filter offers a robust methodology to achieve such an estimation and reconstruction.
View Article and Find Full Text PDF