Publications by authors named "Shane E McCarthy"

We conducted a analysis in seropositive patients who were negative or borderline for functional neutralizing antibodies (NAbs) against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at baseline from a phase 1, 2, and 3 trial of casirivimab and imdevimab (CAS+IMD) treatment in hospitalized coronavirus disease 2019 (COVID-19) patients on low-flow or no supplemental oxygen prior to the emergence of Omicron-lineage variants. Patients were randomized to a single dose of 2.4 g CAS+IMD, 8.

View Article and Find Full Text PDF
Article Synopsis
  • A genome-wide association study identified a genetic variant (rs190509934) that reduces ACE2 expression by 37% and lowers the risk of SARS-CoV-2 infection by 40%.
  • The study confirms six previously known genetic risk variants, with four linked to worse outcomes in COVID-19 infected individuals.
  • A risk score based on common variants was developed, which improves prediction of severe disease beyond just demographic and clinical factors.
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential.

View Article and Find Full Text PDF

Genome-wide association studies (GWASs) are highly effective at identifying common risk variants for schizophrenia. Rare risk variants are also important contributors to schizophrenia etiology but, with the exception of large copy number variants, are difficult to detect with GWAS. Exome and genome sequencing, which have accelerated the study of rare variants, are expensive so alternative methods are needed to aid detection of rare variants.

View Article and Find Full Text PDF

Large-scale human genetics studies are ascertaining increasing proportions of populations as they continue growing in both number and scale. As a result, the amount of cryptic relatedness within these study cohorts is growing rapidly and has significant implications on downstream analyses. We demonstrate this growth empirically among the first 92,455 exomes from the DiscovEHR cohort and, via a custom simulation framework we developed called SimProgeny, show that these measures are in line with expectations given the underlying population and ascertainment approach.

View Article and Find Full Text PDF

Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumina Inc.

View Article and Find Full Text PDF

Significant progress is being made in defining the genetic etiology of schizophrenia. As the list of implicated genes grows, parallel developments in gene editing technology provide new methods to investigate gene function in model systems. The confluence of these two research fields--gene discovery and functional biology--may offer novel insights into schizophrenia etiology.

View Article and Find Full Text PDF

Individuals with autism are more likely to carry rare inherited and de novo copy number variants (CNVs). However, further research is needed to establish which CNVs are causal and the mechanisms by which these CNVs influence autism. We examined genomic DNA of children with autism (N = 41) and healthy controls (N = 367) for rare CNVs using a high-resolution array comparative genomic hybridization platform.

View Article and Find Full Text PDF

We report the identification of a recurrent, 520-kb 16p12.1 microdeletion associated with childhood developmental delay. The microdeletion was detected in 20 of 11,873 cases compared with 2 of 8,540 controls (P = 0.

View Article and Find Full Text PDF

Recent studies have established an important role for rare genomic deletions and duplications in the etiology of schizophrenia. This research suggests that the genetic architecture of neuropsychiatric disorders includes a constellation of rare mutations in many different genes. Mutations that confer substantial risk for schizophrenia have been identified at several loci, most of which have also been implicated in other neurodevelopmental disorders, including autism.

View Article and Find Full Text PDF

Recurrent microdeletions and microduplications of a 600-kb genomic region of chromosome 16p11.2 have been implicated in childhood-onset developmental disorders. We report the association of 16p11.

View Article and Find Full Text PDF

Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications >100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls.

View Article and Find Full Text PDF