Publications by authors named "Shahabeddin Vahdat"

Functional connectivity (FC) patterns in the human brain form a reproducible, individual-specific "fingerprint" that allows reliable identification of the same participant across scans acquired over different sessions. While brain fingerprinting is robust across healthy individuals and neuroimaging modalities, little is known about whether the fingerprinting principle extends beyond the brain. Here, we used multiple spinal functional magnetic resonance imaging (fMRI) datasets acquired at different sites to examine whether a fingerprint can be revealed from FCs of the cervical region of the human spinal cord.

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts.

View Article and Find Full Text PDF

Background And Purpose: There are distinct challenges in the preprocessing of spinal cord fMRI data, particularly concerning the mitigation of voluntary or involuntary movement artifacts during image acquisition. Despite the notable progress in data processing techniques for movement detection and correction, applying motion correction algorithms developed for the brain cortex to the brainstem and spinal cord remains a challenging endeavor.

Methods: In this study, we employed a deep learning-based convolutional neural network (CNN) named DeepRetroMoCo, trained using an unsupervised learning algorithm.

View Article and Find Full Text PDF

Simultaneous functional magnetic resonance imaging (fMRI) of the spinal cord and brain represents a powerful method for examining both ascending sensory and descending motor pathways in humans . However, its image acquisition protocols, and processing pipeline are less well established. This limitation is mainly due to technical difficulties related to spinal cord fMRI, and problems with the logistics stemming from a large field of view covering both brain and cervical cord.

View Article and Find Full Text PDF

Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC).

View Article and Find Full Text PDF

The spinal cord is important for sensory guidance and execution of skilled movements. Yet its role in human motor learning is not well understood. Despite evidence revealing an active involvement of spinal circuits in the early phase of motor learning, whether long-term learning engages similar changes in spinal cord activation and functional connectivity remains unknown.

View Article and Find Full Text PDF

Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms.

View Article and Find Full Text PDF

Repeated seizure activity can lead to long-term changes in seizure dynamics and behavior. However, resulting changes in brain-wide dynamics remain poorly understood. This is due partly to technical challenges in precise seizure control and in vivo whole-brain mapping of circuit dynamics.

View Article and Find Full Text PDF

Poststroke optogenetic stimulations can promote functional recovery. However, the circuit mechanisms underlying recovery remain unclear. Elucidating key neural circuits involved in recovery will be invaluable for translating neuromodulation strategies after stroke.

View Article and Find Full Text PDF

As we learn to perform a motor task with novel dynamics, the central nervous system must adapt motor commands and modify sensorimotor transformations. The objective of the current research is to identify the neural mechanisms underlying the adaptive process. It has been shown previously that an increase in muscle co-contraction is frequently associated with the initial phase of adaptation and that co-contraction is gradually reduced as performance improves.

View Article and Find Full Text PDF

In the absence of any task, both the brain and spinal cord exhibit spontaneous intrinsic activity organised in a set of functionally relevant neural networks. However, whether such resting-state networks (RSNs) are interconnected across the brain and spinal cord is unclear. Here, we used a unique scanning protocol to acquire functional images of both brain and cervical spinal cord (CSC) simultaneously and examined their spatiotemporal correspondence in humans.

View Article and Find Full Text PDF

Background: Passive robot-generated arm movements in conjunction with proprioceptive decision making and feedback modulate functional connectivity (FC) in sensory motor networks and improve sensorimotor adaptation in normal individuals. This proof-of-principle study investigates whether these effects can be observed in stroke patients.

Methods: A total of 10 chronic stroke patients with a range of stable motor and sensory deficits (Fugl-Meyer Arm score [FMA] 0-65, Nottingham Sensory Assessment [NSA] 10-40) underwent resting-state functional magnetic resonance imaging before and after a single session of robot-controlled proprioceptive training with feedback.

View Article and Find Full Text PDF

The spinal cord is frequently affected by atrophy and/or lesions in multiple sclerosis (MS) patients. Segmentation of the spinal cord and lesions from MRI data provides measures of damage, which are key criteria for the diagnosis, prognosis, and longitudinal monitoring in MS. Automating this operation eliminates inter-rater variability and increases the efficiency of large-throughput analysis pipelines.

View Article and Find Full Text PDF

The relationship between neural activation during movement training and the plastic changes that survive beyond movement execution is not well understood. Here we ask whether the changes in resting-state functional connectivity observed following motor learning overlap with the brain networks that track movement error during training. Human participants learned to trace an arched trajectory using a computer mouse in an MRI scanner.

View Article and Find Full Text PDF

When we speak, we get correlated sensory feedback from speech sounds and from the muscles and soft tissues of the vocal tract. Here we dissociate the contributions of auditory and somatosensory feedback to identify brain networks that underlie the somatic contribution to speech motor learning. The technique uses a robotic device that selectively alters somatosensory inputs in combination with resting-state fMRI scans that reveal learning-related changes in functional connectivity.

View Article and Find Full Text PDF

Sleep is necessary for the optimal consolidation of newly acquired procedural memories. However, the mechanisms by which motor memory traces develop during sleep remain controversial in humans, as this process has been mainly investigated indirectly by comparing pre- and post-sleep conditions. Here, we used functional magnetic resonance imaging and electroencephalography during sleep following motor sequence learning to investigate how newly-formed memory traces evolve dynamically over time.

View Article and Find Full Text PDF

Unlabelled: As one learns to dance or play tennis, the desired somatosensory state is typically unknown. Trial and error is important as motor behavior is shaped by successful and unsuccessful movements. As an experimental model, we designed a task in which human participants make reaching movements to a hidden target and receive positive reinforcement when successful.

View Article and Find Full Text PDF

Independent component analysis (ICA) has been widely used to study functional magnetic resonance imaging (fMRI) connectivity. However, the application of ICA in multi-group designs is not straightforward. We have recently developed a new method named "shared and specific independent component analysis" (SSICA) to perform between-group comparisons in the ICA framework.

View Article and Find Full Text PDF

The spinal cord participates in the execution of skilled movements by translating high-level cerebral motor representations into musculotopic commands. Yet, the extent to which motor skill acquisition relies on intrinsic spinal cord processes remains unknown. To date, attempts to address this question were limited by difficulties in separating spinal local effects from supraspinal influences through traditional electrophysiological and neuroimaging methods.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists used a special brain scanning method called fMRI to study how brain networks work in people with a type of epilepsy (MTLE) compared to healthy people.
  • They looked at brain activity without guessing what parts of the brain would be different, discovering networks that were either common or specific to each group.
  • They found that patients with MTLE had stronger connections in some brain networks, while healthy controls had weaker connections in theirs, helping to explain why people with MTLE might have trouble with thinking and memory.
View Article and Find Full Text PDF

As we begin to acquire a new motor skill, we face the dual challenge of determining and refining the somatosensory goals of our movements and establishing the best motor commands to achieve our ends. The two typically proceed in parallel, and accordingly it is unclear how much of skill acquisition is a reflection of changes in sensory systems and how much reflects changes in the brain's motor areas. Here we have intentionally separated perceptual and motor learning in time so that we can assess functional changes to human sensory and motor networks as a result of perceptual learning.

View Article and Find Full Text PDF

Motor learning often involves situations in which the somatosensory targets of movement are, at least initially, poorly defined, as for example, in learning to speak or learning the feel of a proper tennis serve. Under these conditions, motor skill acquisition presumably requires perceptual as well as motor learning. That is, it engages both the progressive shaping of sensory targets and associated changes in motor performance.

View Article and Find Full Text PDF

Independent component analysis (ICA) has been extensively used in individual and within-group data sets in real-world applications, but how can it be employed in a between-groups or conditions design? Here, we propose a new method to embed group membership information into the FastICA algorithm so as to extract components that are either shared between groups or specific to one or a subset of groups. The proposed algorithm is designed to automatically extract the pattern of differences between different experimental groups or conditions. A new constraint is added to the FastICA algorithm to simultaneously deal with the data of multiple groups in a single ICA run.

View Article and Find Full Text PDF