Publications by authors named "Seyedmohammad Moosavizadeh"

Background: It is well established that the mesenchymal stromal cell (MSC) therapeutic potency can be enhanced by cytokine pre-activation or licensing. However, its effects on therapeutic efficacy of small extracellular vesicles (MSC-sEV) have not yet been well established. Here we report on two different cytokine licensing strategies, using either a pro-inflammatory or anti-inflammatory cytokine and evaluate their therapeutic potency in vitro and in a preclinical model of corneal chemical burn.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSCs) possess strong immunomodulatory properties, making them attractive candidates for regenerative medicine and immune-related therapies. Pre-activation, or licensing, of MSCs with cytokines such as interferon-gamma (IFN-γ) and transforming growth factor-beta 1 (TGF-β1) has been shown to enhance their immunosuppressive efficacy. Recent attention has turned to extracellular vesicles (EVs) released by licensed MSCs as a cell-free therapeutic alternative.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cell (MSC) apoptosis is essential for their therapeutic effects, including immunomodulation. Previous studies have shown that MSC-derived apoptotic bodies (ApoBDs) also possess immunomodulatory properties. However, compared to small extracellular vesicles, the preparation, characterization, and biological properties of ApoBDs remain underexplored.

View Article and Find Full Text PDF

Purpose: To develop and characterize a reproducible human corneal epithelial wound-healing model using 1-heptanol, and to investigate the healing potential of Bone Marrow-derived Mesenchymal Stromal Cell small Extracellular Vesicles (MSC-sEV) and the influence of donor characteristics on epithelial healing.

Methods: Eighty-eight (n = 88) human corneoscleral tissues unsuitable for transplantation were employed. Corneal epithelial damage was induced with 1-heptanol and monitored every 24 h up to 96 h using fluorescein and trypan blue staining.

View Article and Find Full Text PDF

Cytokine(s) pre-activation/licensing is an effective way to enhance the immunomodulatory potency of mesenchymal stromal cells (MSCs). Currently, IFN-γ licensing received the most attention in comparison with other cytokines. After licensing human bone marrow-derived MSCs with pro-/anti-inflammatory cytokines IFN-γ, IL-1β, TNF-α, TGF-β1 alone or in combination, the in vitro immunomodulatory potency of these MSCs was studied by incubating with allogeneic T cells and macrophage-like THP-1 cells.

View Article and Find Full Text PDF

Background: Mesenchymal stromal cells (MSCs) show great potential for immunomodulatory and anti-inflammatory treatments. Clinical trials have been performed for the treatment of Type 1 diabetes, graft-versus-host disease and organ transplantation, which offer a promise of MSCs as an immunomodulatory therapy. Nevertheless, their unstable efficacy and immunogenicity concerns present challenges to clinical translation.

View Article and Find Full Text PDF

Protein nanoparticles are promising targeted drug delivery carriers due to their low toxicity, biodegradability, and abundance of proteins in natural sources. Also, protein nanoparticles enable surface modification with other functional proteins or carbohydrate ligands, which improves the efficacy of targeted drug delivery. Nonetheless, a persistent challenge remains to make versatile protein nanoparticles that deliver diverse types of drugs in a wide range of water solubility.

View Article and Find Full Text PDF

Background And Purpose: In a past study, we developed and optimized a novel cationic PEGylated niosome containing anticancer drugs (doxorubicin or quercetin) and siRNA. This study intended to evaluate the anti-tumor effects of the combination therapy to target both the proteins and genes responsible for the development of gastric cancer. CDC20, known as an oncogene, is a good potential therapeutic candidate for gastric cancer.

View Article and Find Full Text PDF