Anthropogenic biodiversity decline threatens the functioning of ecosystems and the many benefits they provide to humanity. As well as causing species losses in directly affected locations, human influence might also reduce biodiversity in relatively unmodified vegetation if far-reaching anthropogenic effects trigger local extinctions and hinder recolonization. Here we show that local plant diversity is globally negatively related to the level of anthropogenic activity in the surrounding region.
View Article and Find Full Text PDFEdaphic habitat islands offer unique environmental conditions for plants and often harbour specialized floras, thus having high nature conservation value. Besides edaphic uniqueness, distinct spatial features and landscape filters characterize habitat islands. However, their role as drivers of biodiversity on habitat islands remains unclear.
View Article and Find Full Text PDFNat Commun
November 2023
A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship.
View Article and Find Full Text PDFCurrent models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages.
View Article and Find Full Text PDFHabitat richness, that is, the diversity of ecosystem types, is a complex, spatially explicit aspect of biodiversity, which is affected by bioclimatic, geographic, and anthropogenic variables. The distribution of habitat types is a key component for understanding broad-scale biodiversity and for developing conservation strategies. We used data on the distribution of European Union (EU) habitats to answer the following questions: (i) how do bioclimatic, geographic, and anthropogenic variables affect habitat richness? (ii) Which of those factors is the most important? (iii) How do interactions among these variables influence habitat richness and which combinations produce the strongest interactions? The distribution maps of 222 terrestrial habitat types as defined by the Natura 2000 network were used to calculate habitat richness for the 10 km × 10 km EU grid map.
View Article and Find Full Text PDFGlob Ecol Conserv
November 2021
Despite islands contributing only 6.7% of land surface area, they harbor ~20% of the Earth's biodiversity, but unfortunately also ~50% of the threatened species and 75% of the known extinctions since the European expansion around the globe. Due to their geological and geographic history and characteristics, islands act simultaneously as cradles of evolutionary diversity and museums of formerly widespread lineages-elements that permit islands to achieve an outstanding endemicity.
View Article and Find Full Text PDFBiodivers Data J
June 2020
Background: Biogeographical units are widely adopted in ecological research and nature conservation management, even though biogeographical regionalisation is still under scientific debate. The European Environment Agency provided an official map of the European Biogeographical Regions (EBRs), which contains the official boundaries used in the Habitats and Birds Directives. However, these boundaries bisect cells in the official EU 10 km × 10 km grid used for many purposes, including reporting species and habitat data, meaning that 6881 cells overlap two or more regions.
View Article and Find Full Text PDFProtected areas (PA) are refugia of biodiversity. However, anthropogenic climate change induces a redistribution of life on Earth that affects the effectiveness of PAs. When species are forced to migrate from protected to unprotected areas to track suitable climate, they often face degraded habitats in human-dominated landscapes and a higher extinction threat.
View Article and Find Full Text PDFIslands harbour a spectacular diversity and unique species composition. This uniqueness is mainly a result of endemic species that have evolved in situ in the absence of mammal herbivores. However, island endemism is under severe threat by introduced herbivores.
View Article and Find Full Text PDFClimatic seasonality drives ecosystem processes (e.g. productivity) and influences plant species distribution.
View Article and Find Full Text PDFEcosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients.
View Article and Find Full Text PDF